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How thousands of microtubules and molecular motors self-organize into spindles remains poorly
understood. By combining static, nanometer-resolution, large-scale electron tomography reconstruc-
tions and dynamic, optical-resolution, polarized light microscopy, we test an active liquid crystal
continuum model of mitotic spindles in human tissue culture cells. The predictions of this coarse-
grained theory quantitatively agree with the experimentally measured spindle morphology and fluc-
tuation spectra. These findings argue that local interactions and polymerization produce collective
alignment, diffusive-like motion, and polar transport which govern the behaviors of the spindle’s
microtubule network, and provide a means to measure the spindle’s material properties. This work
demonstrates that a coarse-grained theory featuring measurable, physically-interpretable parame-
ters can quantitatively describe the mechanical behavior and self-organization of human mitotic
spindles.

The spindle is a highly dynamic cellular organelle that
segregates chromosomes during cell division. It consists
of rapidly polymerizing and depolymerizing microtubules
and a diverse array of motor and non-motor microtubule-
associated proteins (MAPs) [1]. This complex assem-
bly provides a scaffold for force generation, ensuring
high-fidelity chromosome segregation [2]. While the
molecular composition of spindles is now relatively well-
characterized [3–5], the mechanisms driving its large-
scale self-organization remain poorly understood.

One approach to studying spindle self-organization in-
volves developing coarse-grained models, similar to those
traditionally used in materials physics [6]. In particular,
continuum active hydrodynamic theories have emerged as
powerful tools for studying cytoskeletal systems in which
filaments are transiently coupled by a large number of
motors and passive cross-linkers, which bind and unbind
on timescales that are fast compared to the long-time,
large-scale dynamics of the system. These theories have
been instrumental in explaining the results of a series of
experiments on a variety of microtubule-based systems,
including purified in vitro mixtures in which cytoskele-
tal filaments and motors spontaneously self-organize into
dynamic ordered structures [7–9], Xenopus laevis egg
extract spindles [10, 11], and spindles in intact mam-
malian cells [12, 13]. Of these systems, Xenopus extract
spindles are the best-characterized, in part because their
large sizes (∼ 40µm) and long lifetimes (∼ hours) facil-
itate detailed measurements of material properties, us-
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ing either force probes or light microscopy techniques
[10, 14]. In contrast, mammalian mitotic spindles are
smaller (∼ 10µm) and shorter-lived (with a well-defined
metaphase steady-state lasting ∼ 10 minutes [15]), mak-
ing them particularly challenging to study. As a result,
much of our understanding of spindle material physics
comes from studies of Xenopus extract spindles.

However, recent advances in serial-section electron
tomography have enabled full three-dimensional recon-
structions of the positions and configurations of every
microtubule in metaphase spindles in human tissue cul-
ture cells at a single instant in time [16, 17]. Separately,
non-invasive polarization microscopy provides access to
the time dynamics of the microtubule network in living
spindles, but at a spatial resolution limited by the wave-
length of visible light, ∼ 500 nm. By combining data ob-
tained using these complementary techniques, we probe
the physical basis of microtubule organization in HeLa
metaphase spindles, and demonstrate that spatiotempo-
ral patterns in microtubule orientations and densities are
predicted by a minimal coarse-grained model based on
the physics of active liquid crystals [18]. This work in-
dicates that the organization of microtubules in spindles
is driven by their turnover dynamics and collective co-
alignment, diffusion, and polar transport. Furthermore,
the model enables inference of key organelle-scale mate-
rial properties, including parameters describing nematic
elasticity and microtubule diffusivity, and quantitatively
reproduces the statistics of the arrangement of micro-
tubules in cross section at the metaphase plate without
additional fitting parameters. Taken together, this work
demonstrates that coarse-grained, active-liquid-crystal-
based models provide a quantitative framework for inves-

ar
X

iv
:2

50
7.

22
27

3v
1 

 [
ph

ys
ic

s.
bi

o-
ph

] 
 2

9 
Ju

l 2
02

5

mailto:cokelleh@syr.edu
mailto:smaddu@flatironinstitute.org
https://arxiv.org/abs/2507.22273v1


2

tigating microtubule self-organization and inferring key
organelle-scale properties in vivo.

RESULTS

Microtubule Density and Orientation Fields Es-
timated from Electron Tomography Data Are
Consistent with Active Liquid Crystal Theory.
Electron tomography provides detailed ultrastructural
information on microtubules and chromosomes within
spindles, allowing for precise measurements of each mi-
crotubule’s length, position, and morphology within the
spindle apparatus ([17, 19], Fig. 1A). We used recent elec-
tron tomography reconstructions of HeLa spindles [16] to
estimate continuous orientation and density fields in the
spindle bulk. To do this, we divided microtubule p into
Mp sub-segments, with each sub-segment m character-
ized by its three-dimensional (3D) position Rp

m, and 3D
orientation vector N̂p

m, both determined from the end-
point locations of the segment (S.I. 1). In the three com-
plete electron tomography reconstructions we analyzed,
the total number of microtubules (NMT) varies between
4000 and 7300, with an average of approximately 110
sub-segments per microtubule. The coarse-grained fields
describing the microtubule orientation N̂(R) and density
ρ(R) at position R are estimated from the positional and
orientational information of the sub-segments [6],

ρ(R) =

NMT∑
p=1

Mp∑
m=1

δ(R−Rp
m) (1)

N̂(R) =
V

Nseg

NMT∑
p=1

Mp∑
m=1

N̂p
mδ(R−Rp

m) (2)

where V is the analysis volume, Nseg =
∑

pMp is the
total number of microtubule segments in the volume, and
the nematic director N̂(R) is normalized to unit length
at each point R.

To interpret these coarse-grained estimates, we com-
pared them to predictions from an active liquid crystal
theory of dynamic microtubules collectively interacting
via cross-linkers and molecular motors. We use a theory
in which the orientation of microtubules is determined
by nematic interactions, with a polar transport of mi-
crotubules aligned along the nematic director. Neglect-
ing random noise terms and considering a state without
hydrodynamic flows, as has previously been argued is
appropriate for metaphase spindles, this theory predicts
that the fields ρ(R, t) and N̂(R, t) obey the equations of
motion ([10], S.I. 3)

∂ρ

∂t
= Γ0 −Θρ+∇ ·

[
D∇ρ− v1ρN̂

]
(3)

∂N̂

∂t
= K(I− N̂N̂)∇2N̂. (4)

In the equation for microtubule density ρ, the first term
represents microtubule nucleation with rate Γ0. The
second term describes microtubule disassembly events
(catastrophes) occurring at rate Θ. The term inside the
divergence operator captures spatial transport of micro-
tubules by both diffusive-like motion and directed (polar)
transport. Microtubule diffusive-like motion is character-
ized by a diffusivity D, while directed (polar) transport
follows the vector field v1N̂. The latter term explicitly
violates nematic symmetry and is uniquely active in ori-
gin, since it breaks detailed balance [18]. The equation
for the director results from using the one-Frank constant
approximation with parameter K, the nematic diffusiv-
ity, given by the ratio of the nematic elastic constant to
the rotational drag coefficient [10, 12]. The projection
operator I−N̂N̂ preserves the unit magnitude of the ori-
entation field. To the lowest order in spatial gradients,
the theory predicts that steady-state microtubule density
ρ0 is constant in space and time, while the steady-state
director N̂0 obeys the projected vectorial Laplace equa-
tion,

ρ0 =
Γ0

Θ
;

(
I− N̂0N̂0

)
∇2N̂0 = 0. (5)

It was previously shown that Eq. (5) for the director
N̂, when combined with anchoring conditions derived
from the geometry of the best-fit spindle boundary,
accurately describes the average microtubule orientation
field in HeLa cells [13]. This result agrees quantitatively
with our independent analysis of microtubule orientation
patterns across the spindle (Figs. 1B & S1). Addi-
tionally, within the spindle interior, the coarse-grained
microtubule density is approximately uniform, varying
by at most ∼ 20% near the metaphase plate, where
condensed chromosomes occupy a significant fraction
of the available volume (Fig. S2). Taken together,
the spindle-scale patterns of microtubule concentra-
tion and orientation quantitatively agree with the theory.

Properties of Density and Orientation Correla-
tion Functions from Electron Tomography Data.

We next investigated spatial patterns in fluctuations of
microtubule density and orientation. These patterns, as
quantified by correlation functions, provide a validation
of the equations of motion Eq. (3) and Eq. (4), and al-
low estimation of the physically meaningful parameters
in those equations. To remove the dependence of ρ on the
density of microtubule sub-segments, which depends on
experimental details such as sampling density, we instead
analyze the normalized density, C = ρ/ρ0 = ρV/Nseg.
Here, V is the volume of the analysis box, defined as
the largest-volume cuboid contained within the spindle
boundary; the dimensions of V are Lx×L⊥×L⊥ (Fig. 1C,
black dashed box). This normalization procedure also fa-
cilitates direct comparison with polarization microscopy
measurements (next section). Fluctuations in normalized
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density are defined as

δC(R) =
V

Nseg

NMT∑
p=1

Mp∑
m=1

δ(R−Rp
m)− 1. (6)

Fluctuations in orientation are calculated by subtracting
the director field predicted by Eqn. (5) from the observed
director field (Fig. 1C),

δN(R) = N̂(R)− N̂0(R). (7)

To quantify spatial patterns in fluctuations of micro-
tubule concentration and orientation fields, we plot
equal time correlation functions, measuring how fluc-
tuations at different spatial locations are related at
the same instant in time (see Materials & Methods).
We calculate density-density, director-director, and
director-density correlation functions in Fourier space,
where they are predicted to take relatively simple
functional forms [6], and plot them as a function of
the wavevector components along the long and short
axes of the spindle (Fig. 1D). To facilitate comparison
with polarization microscopy measurements (following
section), we project the fluctuating fields over the
ẑ-axis and compute the correlation functions in the
xy-plane (Materials & Methods, S.I. 3). For each of
the nET = 3 electron tomography reconstructions, we
first plot the director-director snn(qx, q0y) and density-
density scc(qx, q0y) correlation function along the wave
vector component qx parallel to the spindle axis. We
plot these correlation functions in the long-wavelength
limit, i.e. with the perpendicular component qy fixed
at the lowest available mode q0y = 2π/L⊥ (Materials
& Methods). We also plot snn and scc as a function
of the wavevector component qy perpendicular to the
spindle’s axis, with the parallel component fixed at the
lowest available mode q0x = 2π/Lx. All these corre-
lation functions approximately follow inverse-square
power-law scaling, 1/q2, consistent with a minimal
model in which orientation and density dynamics are
governed by independent local processes, for example,
nematic elasticity and microtubule diffusive-like motion
respectively ([6], S.I. 3). However, we also observe that
the director-density cross-correlation snc(q0x, qy) is finite
(Fig. 1D, far right), with magnitude and functional form
comparable to the self-correlations. This observation
indicates that density and orientation dynamics are not
independent and suggests that coupling between the
fields significantly influences their behavior.

Microtubule Density and Orientation Fields Es-
timated from LC-PolScope Data Are Consistent
with Active Liquid Crystal Theory. Next, we sought
to measure the time-resolved dynamics of microtubule
density and orientation fluctuations to complement the
spatial correlation measurements obtained from static
electron tomography reconstructions. We used the LC-
PolScope [20, 21], a form of non-invasive, label-free polar-
ized light microscopy, to characterize the structure and

dynamics of the microtubule network in HeLa spindles.
The LC-PolScope simultaneously measures the optical
retardance r(r, t) and optical slow axis θ(r, t) at a given
time t and each position r in a two-dimensional (2D) im-
age [21]. Although the LC-PolScope has lower spatial
resolution than electron tomography (S.I. 2), it allows us
to extract time-resolved information regarding the micro-
tubule cross-sectional density ρ2D(R, t) and the director
N̂(r, t) ([12, 13]. In general, the retardance value de-
pends on the angle between the director and the optical
axis ẑ (S.I. 2). However, if microtubules are perpendic-
ular to the optical axis ẑ, N̂ · ẑ ≈ 0, as is the case for
microtubules in the central spindle region (Fig. 2A&B),

r(r, t) ≈ A0

∫
T

ρ2D(R, t)dz; (8)

n̂(r, t) ≡ (cos θ(r, t), sin θ(r, t)) ≈
∫
T
N̂(R, t) dz∥∥∥∫T N̂(R, t) dz

∥∥∥ , (9)

where T is the sample thickness, A0 ≈ 7.5 nm2 is a
previously-measured constant that characterizes the
retardance contribution of a single microtubule [12, 22],
and ρ2D(R) is the 2D microtubule cross-sectional
density in the plane perpendicular to N̂(R). In the
central spindle, microtubules are approximately parallel
to the spindle axis x̂, and ρ2D(R) = λρ(R), where λ
is the electron tomography sampling length along the
microtubules, λ ≈ 20 nm [16]. It was previously shown
that retardance and slow axis measurements of HeLa
spindles are quantitatively consistent both with electron
tomography reconstructions and with the predictions of
Eqn. 5 [13]. This is also consistent with our independent
measurements and analysis (Fig. S5).

Properties of Density and Orientation Corre-
lation Functions from LC-PolScope Data. We
next sought to compare in more detail the structure and
dynamics of the microtubule network, as measured by
LC-PolScope, with the results of our analysis of elec-
tron tomography data. To perform this comparison,
we computed the spatiotemporal correlation functions of
director and density fluctuations from nPol = 11 LC-
PolScope datasets, focusing on several long-wavelength
limits (Fig. 2C). To facilitate comparison with electron
tomography data, we normalize the retardance measure-
ments in each spindle by its time-averaged value inside
the analysis box, c(r, t) = r(r, t)/⟨r(r)⟩t (Materials &
Methods). To minimize interference from metaphase
chromosomes, we analyzed fluctuations in an analysis
box of dimensions L0 × L0 = 6µm × 6µm, centered at
(−3µm, 0) (Fig. 2D). Fluctuations are defined via con-
tinuous two-dimensional analogs of Eqns. (6) and (7),

δc(x, y) = c(x, y)− 1;

δn(x, y) = n̂(x, y)− n̂0(x, y),

where n̂0(x, y) is the orientation field predicted by
Eqn. (5), projected into 2D along a direction perpen-
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dicular to the spindle axis using Eq. (9). We observed
that the autocorrelation functions, cnn(q0, ω) and
ccc(q0, ω), with wavenumbers fixed at the lowest nonzero
modes q0 = (q0, q0) = (2π/L0, 2π/L0) (Fig. 2E), decay
roughly proportional to 1/ω2. At large q, the equal-time
correlation functions snn(qx, q0) and scc(qx, q0) appear
consistent with inverse-square power-law scaling, similar
to the electron tomography measurements. At large
qy, however, the density correlation scc(q0, qy) displays
scaling between 1/q2y and 1/q4y, inconsistent with collec-
tive dynamics controlled by microtubule diffusion alone.
At low wavenumbers (long wavelengths), all equal-time
correlation functions calculated from LC-PolScope data
deviate from power-law behavior and start to flatten;
this trend is most clearly evident in scc(q0, qy). This
could be a consequence of the finite size of our analysis
box, since power-law behavior is only expected in the
infinite system-size limit. Alternatively, it could indicate
that other processes, for instance, microtubule turnover,
become dominant at the longest wavelengths.

Average Orientational Data from Electron To-
mography and LC-PolScope is Consistent with
Active Liquid Crystal Theory. We next sought to
compare orientation data, simultaneously averaged over
all electron tomography and all LC-PolScope data sets,
with the predictions of Eqn. (5). Averaging orientation
data across multiple spindles is non-trivial because pre-
dictions from Eqn. (5) depend explicitly on the geom-
etry of each individual spindle. In our model, spindle
geometry is characterized by three independent param-
eters (S.I. 1): the best-fit spindle half-length a, best-
fit spindle half-width b, and half-distance between spin-
dle poles d. (The quantity d is measured directly from
electron tomography data, but is treated as fit parame-
ter when determining the predicted orientation fields for
LC-PolScope slow axis data). To average over spindles,
we first rescaled the spatial coordinates (x, y, z) of each
dataset by its interpolar half-distance d, and then com-
puted the average over all available datasets:

⟨θ⟩(x/d, s/d) = ⟨θ(x/d, s/d)⟩all spindles.

where s =
√
y2 + z2 denotes the radial coordinate.

When taking the average over spindles, we give equal
weight to the nET = 3 ẑ-projected electron tomography
data sets and the nPol = 11 time-averaged LC-PolScope
data sets. We compare this combined dataset to numeri-
cal simulations in which the spindle poles are positioned
at (±1, 0, 0). In these simulations, we enforce tangential
boundary conditions on an ellipsoid whose long and short
semi-axes were set to the averages of the rescaled spindle
dimensions a/d and b/d, with averages again taken over
all datasets (equal weights given to electron tomography
and LC-PolScope). Without using additional fit param-
eters, the combined dataset shows excellent agreement
with the numerical predictions (Fig. 3A,B).

Active Liquid Crystal Theory Quantitatively
Explains Combined Electron Tomography and

LC-PolScope Fluctuation Spectra We then inves-
tigated whether estimates of spatiotemporal correlation
functions, obtained from electron tomography and LC-
PolScope data, are consistent with the predictions of
Eqns. (3) and (4). To do this, we first binned each data
set and plotted them on a common set of axes (Fig. 3C).
This reveals that the two estimates of snn(qx, q0) and
snn(qx, q0) agree, within experimental uncertainty, for all
values of qx. Along qy, the two estimates of the director-
director correlation function agree, except at the very
lowest values of qy. The density-density correlation func-
tions and the density-director correlation function have
a similar shape between both data sets, but the LC-
PolScope estimates were systematically lower. The close
agreement between these independent measurements–
achieved without using any adjustable parameters–is re-
markable, and indicates that experimental errors are rel-
atively minor, such as potential fixation and reconstruc-
tion artifacts in the electron tomography data and poten-
tial optical projection artifacts and camera noise in the
LC-PolScope data.

Having established that LC-PolScope and electron to-
mography measurements yield similar correlation spec-
tra, we next focused on using all available fluctuation
data to test the active liquid crystal model and to es-
timate the phenomenological parameters it contains. To
do this, we combined the spatial correlation function sets
by directly averaging the LC-PolScope and electron to-
mography estimates, giving equal weight to each data set
(Fig. 3C, black points with error bars). For the temporal
correlation functions, only LC-PolScope data were avail-
able (Fig. 3C, green circles with error bars). To com-
pare the combined correlation functions with the pre-
dictions of Eqs. (3) and (4), we introduced noise terms
into the equations of motion and calculated the resulting
spatiotemporal density–density, ccc(q, ω), and director-
director, cnn(q, ω), correlations in Fourier space (S.I. 3),

ccc(q, ω) =
q2yv

2
1(s

n
0)

2 + (K2q4 + ω2)(sc0)
2

(K2q4 + ω2) ((qxv1 + ω)2 + (Dq2 +Θ)2)
;

cnn(q, ω) =
(sn0)

2

ω2 +K2q4
, (10)

and the equal-time density-density, scc(q), director-
director, snn(q), and density-director, snc(q), correla-
tions in Fourier space,

scc(q) =
(sc0)

2

2(Dq2 +Θ)
+

q2y(s
n
0)

2v21((D +K)q2 +Θ)

2Kq2(Dq2 +Θ)
(
q2xv

2
1 + ((D +K)q2 +Θ)2

) ;
snn(q) =

(sn0)
2

2Kq2
;

snc(q) = − iqyv1(s
n
0)

2

2Kq2((D +K)q2 + iqxv1 +Θ)
. (11)

In these equations, sc0 and sn0 are the magnitudes of the
Gaussian-distributed random noise in the density and
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orientation equations, respectively. All other parameters
are defined in Eqns. (3) and (4) and described in the
text immediately following those equations. This model
for fluctuations is similar to that presented in [10], with
one important modification: whereas the model in that
work only contained random noise in the orientation
field, the model presented here includes independent
sources of noise in both fields. This modification is
needed to explain the magnitude and form of the
density correlations scc(qx, q0y) in the direction parallel
to the spindle axis (Fig. 3C, second column), and the
cross-correlations between the director and density fields.

To test whether these predictions are consistent
with the combined correlation functions, we estimated
Θ = 0.047s−1 from previous measurements in HeLa
cells [13], and used all remaining parameters (sc0, sn0 ,
D, K, and v1) as fit parameters. (When estimating
Θ, we used the average of the turnover frequencies of
kinetochore and non-kinetochore microtubules, weighted
to account for the relative abundance of these popula-
tions.) With the best-fit parameters given in Table 1,
the model produces excellent fits to the observed data
(Fig. 3C, black curves). As in the previous analysis
of fluctuations in Xenopus egg extract spindles, we
found that the best-fit microtubule diffusion constant,
D = (0.0043± 0.0023)µm2 s−1, is similar to the best-fit
nematic diffusivity, K = (0.0021± 0.0002)µm2 s−1 (un-
certainties estimated via non-replacement subsampling,
(Materials & Methods)). The values we measured are
lower than the Xenopus values by a factor of approxi-
mately five [10], which might be caused by microtubules
being shorter in HeLa spindles than in Xenopus ex-
tract spindles, ∼ 2µm and ∼ 6µm respectively, or
microtubules being less dense in HeLa spindles than in
Xenopus extract spindles, ∼ 13 microtubules/ µm2 and
∼ 50 microtubules/ µm2 in cross-section respectively
(S.I. 1 & 2, [23]. The value we measured for v1,
(8.4 ± 6.2)µm/min, is larger than the speed of micro-
tubule sliding in these spindles, ∼ 1µm/min [13], but
smaller than the speed of microtubule polymerization
in these spindles, ∼ 15µm/min (data not shown). Such
an intermediate polar transport speed could result from
microtubule-mediated microtubule nucleation [24–26].

Active Liquid Crystal Theory Explains The
Arrangement of Microtubules in Spindle Cross-
Sections.

Microtubules in spindles, both kinetochore micro-
tubules and non-kinetochore microtubules, are often
described as being organized into bundles [27–31]. The
active liquid crystal theory presented here successfully
describes aspects of microtubule organization in the
spindle without explicitly invoking bundling. In this
theory, a “bundle”, if present, would be a transient
density fluctuation, not requiring any additional mecha-
nism beyond the local interactions of microtubules (and
microtubule turnover), which underlie the basis of the

active liquid crystal theory. However, the correlation
functions used to quantitatively compare theory and
experiments in Figure 3 are all evaluated in the long
wavelength limit: i.e. in the low-qx limit to investigate
the qy dependence, in the low-qy limit to investigate the
qx dependence, and in both the the low-qx and low-qy
limits to investigate the ω dependence. In contrast,
many studies of microtubule bundles in spindles analyze
the arrangements of microtubules in a cross-section of
the spindle [32–34]. A cross-section is a thin slice, and
thus may contain information not present in the long-
wavelength limit. We therefore sought to investigate
the extent to which the active liquid crystal theory
can describe the lateral arrangement of microtubules in
spindle cross-sections near the metaphase plate.

To test this, we take a constant-x cross-section of the
spindle and extract from electron tomography data the
y-z coordinates ri of each microtubule intersection (Fig-
ure. 4B). We then evaluate the slice correlation functions,

RCC(q⊥) =
A

N2
s

Ns∑
m,n=1

exp(−iq⊥ · (rm − rn)) (12)

where A is the area of the analysis box, Ns is the number
of microtubules intersecting the plane and q⊥ = (qy, qz).
The theoretical prediction for this quantity is obtained
by marginalizing the 3D spatial correlation function over
the wavevector component qx parallel to the spindle-axis
(S.I. 3),

Rcc(qs) =
Lz(s

c
0)

2

4
√
D
√
Dq2s +Θ

+

Lz(s
n
0)

2q2s′′

8K ′2

[
2
√
2e1(e

2
1 − w2) + 2q2s′

(
α− 3

√
2e1
)
+ α′(qs)

Dq2s′e1 ((q
2
s′ − e21)

2 − e21w
2)α(qs)

+
2
√
2e2(e

2
2 − w2) + 2q2s′

(
α− 3

√
2e2
)
+ α′(qs)

Kq2s′e2 ((q
2
s′ − e22)

2 − e22w
2)α(qs)

]
(13)

where qs = |q⊥|;K ′ = D + K; R =
√
4q2s′ + w2; α± =√

2q2s′ + w(w ±R); α = α+ + α−; α′(qs) =

w (R(α− − α+) + wα) ; q2s′ = q2s + Θ
D+K ; w2 =

v2
1

(D+K)2 ; e
2
1 = q2s + Θ

D ; e22 = q2s ; q
2
s′′ = q2sv

2
1 . Using

only those fit parameters found previously from spindle
geometry or by fitting the long-wavelength correlation
functions, the active liquid crystal theory accurately
predicts the cross-sectional density fluctuations at
low and intermediate wavenumbers qs (Fig. 4C).
However, at the largest wavenumbers, qs ≳ q∗s = 20
radµm−1, corresponding to real-space distances less
than λ∗ = 2π/q∗s ≈ 0.3µm, RCC(qs) starts to deviate
significantly from the theoretical prediction. As the
typical distance between neighboring microtubules in
the spindle is ∼ 50 nm [16], this corresponds to a few
microtubule spacings. The arrangements of microtubules
on these length scales are presumably dictated by the
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molecular properties of cross-linkers in the spindle, and
are not captured by the highly coarse-grained active
liquid crystal theory. It is an exciting challenge to
expand statistical theories of liquids [35] to explain the
complex, actively-driven organization of microtubules in
the spindle at lengths below ∼ 300 nm. For length scales
larger than ∼ 300 nm, which includes those accessible to
conventional light microscopy, the active liquid crystal
theory is sufficient to quantitatively describe the ar-
rangements of microtubules within the metaphase plate,
without the need to invoke specialized bundle-forming
mechanisms.

Discussion This study integrates static micro-
mechanical information from high-resolution electron
tomography reconstructions with dynamic light mi-
croscopy measurements to investigate the physical
mechanisms underlying microtubule self-organization
in metaphase human tissue culture spindles. Using a
coarse-grained active liquid crystal theory, we quanti-
tatively describe the emergent fluctuation spectra of
microtubule density and orientation fields. Our findings
highlight distinct physical mechanisms driving spindle
organization along its long and short axes, providing
insights into the anisotropic material properties of the
spindle.

The LC-PolScope has limitations such as projection
artifacts, limited spatial resolution, correlated back-
ground noise, and low sensitivity to weak birefringence.
Similarly, serial-section electron tomography faces
challenges like sample preparation difficulties, sectioning
artifacts, and alignment issues. Despite this, the fluc-
tuation spectra measured by these two methods show
remarkable agreement, highlighting their complementary
strengths in studying microtubule organization.

Our data suggests that nematic elasticity alone gov-
erns the relaxation of orientational fluctuations in the
spindle along both axes, but that relaxation of micro-
tubule density is more complex. Along the spindle’s long
axis, microtubule density dynamics are decoupled from
orientation and are primarily governed by diffusive-like
motion. In contrast, along the short axis, the relaxation
of density fluctuations is driven by a combination of
alignment interactions (i.e. nematic elasticity), diffusive-
like motion, and microtubule turnover. In particular, the
observed deviation of scc(q0, qy) from ∝ q−2

y behavior at
high qy suggests that density dynamics are coupled to
the director configuration (Fig. 3C, bottom right plot).
Additionally, the non-zero cross-correlation function
directly confirms coupling between the fields (Fig. 3C,
top right plot).

In our active liquid crystal theory, density-director
coupling is captured by the v1cN̂ term in Eqn. (3),
which describes active transport of microtubules along a
specific (vector) direction in space, and explicitly breaks

the nematic symmetry of the equations of motion. Such
symmetry-breaking is anticipated in the LC-PolScope
data, as analysis boxes span are centered on one half
of the spindle, where coherent polar ordering of mi-
crotubules is known to influence transport [36, 37]. In
contrast, the electron tomography data analysis regions
are centered at the spindle mid-plane, in which case
symmetry in microtubule polarity along the spindle
axis is expected. Thus, the observed spindle-scale
symmetry-breaking in this region remains unclear. More
detailed measurements of the microtubule polarity
field (and its fluctuations) may help to answer this
question [23, 38, 39].

Our work also demonstrates the utility of a phe-
nomenological coarse-grained active liquid crystal frame-
work for inferring material properties, such as nematic
elasticity, microtubule diffusivity, and turnover dynam-
ics. The measured parameters provide a quantita-
tive link between microscopic interactions and emergent
mesoscale spindle behaviors. Future work should focus on
connecting these coarse-grained parameters to molecular-
scale interactions to refine the theoretical framework fur-
ther. Additionally, extending this methodology to study
spindle dynamics in other cell types and experimental
conditions will provide a broader understanding of the
principles governing microtubule organization in diverse
biological systems.

MATERIALS AND METHODS

A. Cell lines

Electron tomography data were obtained from HeLa
Kyoto cells, cultured and prepared as described previ-
ously [16]. For live-cell imaging experiments, we used a
stable HeLa cell line expressing EGFP-tagged centrin to
fluorescently label centrioles and sfGFP-tagged CENPA
to label since centromeres; the establishment and charac-
terization of this cell line was previously reported in [13].
All cell culture and imaging procedures adhered strictly
to protocols detailed in these prior studies.

B. LC-PolScope Imaging, Metaphase Spindle
Selection, Definition of Spindle-Referenced

Coordinate System

To acquire live-cell images, we recorded movies con-
sisting of 34 frames captured over approximately 5 min-
utes. Each movie frame comprised a multiplexed z-
stack combining LC-PolScope and epifluorescence imag-
ing, which allowed simultaneous visualization of micro-
tubules and centrioles, respectively. To acquire polar-
ization images, LC-PolScope hardware (Cambridge Re-
search Instruments) was mounted on a Nikon TE2000-
E microscope equipped with a numerical aperture (NA)
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0.52 air condenser lens, a 100×, NA 1.45, oil-immersion
objective lens, and a monochromatic bandpass filter
centered at λim = 546 nm. To image centrioles,
the microscope was equipped with an LED epifluores-
cence light source (Thorlabs) and a standard EGFP fil-
ter cube. We controlled the microscope hardware us-
ing the OpenPolScope MicroManager software package
(www.openpolscope.org).
Metaphase cells were identified for analysis based on spin-
dle geometry and stability criteria. Specifically, we se-
lected data sets where the interpolar distance remained
approximately constant (standard deviation of interpo-
lar distance less than 10%) throughout imaging. Ad-
ditionally, to ensure consistent orientation, we included
only those data sets in which the vertical positions (ẑ-
direction) of the centrioles remained within ±1, µm of
each other for the entire duration of the movie. Data
sets not meeting these criteria were excluded from fur-
ther analysis. Live-cell imaging experiments were con-
ducted in four independent experimental replicates, each
involving separately plated cells. To correct for spindle
translation and rotation in the image plane (xy-plane),
we performed all analysis in a coordinate system in which
the origin is fixed to the center of the spindle and the
spindle long axis defines the x̂-direction (Fig. S3).

C. Calculation of Experimental Correlation
Functions

a. From Electron Tomography: To estimate correla-
tion functions from electron tomography reconstructions,
we first evaluate the discrete Fourier transforms of the
fluctuating director N̂(R) and the normalized density
field C(R) as follows,

δC(Q) =
V

Nseg

NMT∑
p=1

Mp∑
m=1

exp(−iQ ·Rp
m)− δ(Q)

δN(Q) =
V

Nseg

NMT∑
p=1

Mp∑
m=1

N̂p
m exp(−iQ ·Rp

m)− N̂0δ(Q)

where Q = (qx, qy, qz), and N̂0(R) is the solution to
Eqn. (5) with physically realistic boundary conditions,
obtained numerically (S.I. 3). We estimate the spatial
correlation functions in three dimensions using the direct
summation method, i.e.

SCC(Q) =
1

V
δc(Q)δc(−Q);

SNN(Q) =
1

V
δN(Q)δN(−Q);

SNyC(Q) =
1

V
δN(Q)δc(−Q),

where V is the volume of the analysis box. In three di-
mensions, all spatial correlation functions have units of

∼ µm3. Two-dimensional, ẑ-projected correlation func-
tions are calculated from the 3D ones (Materials & Meth-
ods)

scc(q) =
1

Lz
SCC(qx, qy, 0); snn(q) =

1

Lz
SNN(qx, qy, 0);

snc(q) =
1

Lz
SNyC(qx, qy, 0),

where Lz is the average spindle thickness at the
metaphase plate (the x = 0 section of the best-fit
ellipsoid), Lz = b−1

∫ b

−b
(b2 − y2)dy = πb/2. The

two-dimensional, ẑ-projected correlation functions have
units of ∼ µm2.

b. From LC-PolScope measurements: To estimate
correlation functions from LC-PolScope data, we
first compute the normalized density field c(r, t) =
r(r, t)/⟨r⟩t(r). The time-averaged retardance field ⟨r⟩t(r)
is calculated by fitting the computed time-averaged re-
tardance image to (Fig. 2B, middle row) to a paraboloid.
We use Mathematica’s inbuilt Fourier[] function to ap-
proximate the (2 + 1)D Fourier transforms of the fluc-
tuations δc = c(r, t) − 1, δ̃c(q, ω) and δ̃ny(q, ω). To
mitigate boundary effects, we apply mirror padding in
space and time to all data arrays before computing all
self-correlation functions (nn, cc correlations) [40]. We
omit the mirror padding step when computing the cross-
correlations (nc correlations), since mirror padding forces
the imaginary component of the cross-correlation to van-
ish artificially. After computing the Fourier transforms
δ̃c(q, ω) and δ̃ny(q, ω), we calculate the spatiotemporal
and equal-time correlation functions:

ccc(q, ω) =
1

τ0λ20
δ̃c(q, ω)δ̃c(−q,−ω);

cnn(q, ω) =
1

τ0λ20
δ̃ny(q, ω)δ̃ny(−q,−ω);

cnc(q, ω) =
1

τ0λ20
δ̃ny(q, ω)δ̃c(−q,−ω);

scc(q) =
1

2π

∫
ccc(q, ω)dω; snn(q) =

1

2π

∫
cnn(q, ω)dω;

snc(q) =
1

2π

∫
cnc(q, ω)dω.

where τ0 is the total time of the movie being analyzed
and the ω-integrals are taken over all available angular
frequencies ω. To correct for Gaussian-distributed back-
ground noise in the retardance and slow-axis signals, we
initially fit each temporal correlation function at fixed
wavevector to functions of the form:

cnn(q0, ω) =
Ann

ω2
+Bnn;

ccc(q0, ω) =
Acc

ω2
+Bcc.
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We then subtract the fitted additive constants from the
original correlation function,

cnn(q0, ω) → cnn(q0, ω)−Bnn;

ccc(q0, ω) → ccc(q0, ω)−Bcc.

To correct for spurious high-q correlations induced by
the finite optical resolution of the LC-PolScope, we de-
convolve the correlation functions scc(q), snn(q), and
snc(q) by the experimentally measured optical impulse
function of the LC-PolScope (Fig. S6),

scc(q) → eσ
2
0q

2

scc(q); snn(q) → eσ
2
0q

2

snn(q);

snc(q) → eσ
2
0q

2

snc(q),

where σ0 = 61 nm characterizes the point spread func-
tion. Finally, we discard data for which |q| > 2π/λim,
where λim = 265 nm is half the microscope illumination
wavelength.

D. Model Fitting & Parameter Estimation

The predictions of the model (Eqns. (11)) were fitted
to the log-transformed experimental data (black points
in Fig. 3). Best-fit values were obtained by minimizing
the sum of squared residuals across all log-transformed
data sets simultaneously. Parameter uncertainties were
estimated via non-replacement subsampling [41]: in each
trial, we randomly selected 6 of the 11 LC-PolScope
single-spindle data sets and 2 of the 3 single-spindle ET
data sets. For the spatial correlation functions, we aver-
aged the selected data sets, giving equal weight to LC-
PolScope and ET data; the model was then fitted to the

composite subsampled data set. This procedure was re-
peated 50 times, and the means and standard deviations
of the distributions of best-fit parameters were estimated.
For each parameter, the reported uncertainty (Main Text
and Table 1) is the larger of the following two quanti-
ties: (i) the standard deviation over subsamples; (ii) the
absolute difference between the mean of the subsample
distribution, and the best-fit value obtained by fitting all
data sets simultaneously.

To estimate the uncertainty in RCC(qs) at each
wavenumber qs (Fig. 4C, black dashed curves), we re-
computed the function after setting every fit parameter
to the upper and lower bounds of its estimated range (Ta-
ble 1). Since there are five fit parameters (sc0, sn0 , D, K,
and v1), this generated 25 = 32 realizations of RCC(qs)
for each qs. The standard deviation of these 32 values
was taken as the uncertainty for that wavenumber.

E. Data & Code Availability

All data and codes used in this paper will be made
available on request.
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FIG. 1. Spatial correlations in fluctuations calculated from electron tomography reconstructions of HeLa spindles. (A) Electron
tomography enables complete reconstruction of HeLa spindle microtubules. Only microtubules with contour length > 1µm are
displayed here, but all microtubules are used in subsequent calculations. The light blue plane indicates z = 0. (B) Active liquid
crystal model of microtubule orientation. Grey curves show streamlines of the numerically predicted director field N̂0(R); black
curve in z = 0 plane indicates the outline of the ellipsoid that best fits the boundary of the spindle shown in A. (C) At each
microtubule segment, the director fluctuation δN(R) (right) is calculated by subtracting the predicted director N̂0(R) (middle)
from the observed director N̂(R) (left). In the N̂(R) plot, colored curves show microtubules that lie within 0.5µm of the plane
z = 0. In all plots, black circles indicate centriole positions; black dashed box shows the region (dimensions Lx×L⊥×L⊥) where
correlations are calculated. (D) Director-director, density-density, and director-density correlation functions snn(q), scc(q), and
snc(q) along wave-vector components qx and qy, parallel and perpendicular to the spindle axis respectively, for nET = 3 different
spindles. The cross-correlation snc(q) is shown as a function of qy only (rightmost plot). For all curves plotted as a function of
qy, correlation functions were averaged over 10 rotations of the spindle about its central axis x̂. Dashed black triangles in all
plots indicate slope -2, corresponding to a functional form ∝ q−2.
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FIG. 2. LC-PolScope characterization of spindles in living HeLa cells. (A) Left : LC-PolScope images take advantage of the
intrinsic birefringence of spindle microtubules to provide information about their density and orientation, projected over the
optical axis ẑ. Right : LC-PolScope images are compared to the predictions of a model where the 3D streamlines predicted by
the nematic model are projected over ẑ using Eq. (9). (B) Top & Middle Rows: Instantaneous and time-averaged images of LC-
PolScope retardance (related to projected microtubule density) and optical slow axis (related to projected orientation). Time
averages taken over 5 mins (34 frames). White dashed curve in the retardance images shows the best-fit ellipse. Bottom Row :
Predictions of retardance and slow axis from numerical solutions of Eqn. 5 supplemented with boundary conditions based on the
geometry of this spindle (S.I. 3). Defect positions (black dots) are chosen so that the predicted orientation field fits the observed
time-averaged orientation field. Scale bar 2 µm. (C) 2D-projected director fluctuations δn(r, t) are calculated by subtracting
the numerically predicted 2D director n̂0(r) from the measured 2D director n̂(r, t). (D) Instantaneous plot of δny(r, t), the
y-component of δn(r, t). Near the middle of the spindle, δn ≈ δnyŷ. Correlations are calculated in the white dashed box,
dimensions L0×L0 = 6µm×6µm. (E) Left to right : Spatiotemporal director-director and density-density correlation functions
cnn(q0, ω) and ccc(q0, ω), evaluated at the longest available wave-vector q0 = (2π/L0, 2π/L0), as a function of frequency ω.
The spatial correlation functions snn(q) and scc(q), plotted as functions of wave-vector components qx and qy, parallel and
perpendicular to the spindle axis respectively. Dashed black triangles in the first five plots indicate a slope of −2 (∝ q−2

scaling); the bold red dashed triangle in the final plot indicates a slope of −4 (∝ q−4 scaling). Each colored curve represents
data from one spindle; data from nPol = 11 different spindles is shown.
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FIG. 3. Active liquid crystal theory theory accurately describes microtubule orientation in HeLa spindles, as well as spa-
tiotemporal correlations in microtubule density and orientation. (A) Left: The ẑ-projected orientation field and best-fit spindle
boundary, averaged over both electron tomography (ET) and LC-PolScope data sets. Prior to averaging, x- and y-coordinates
of all data sets were normalized by the interpolar half-spacing d. Right: Numerical prediction of ẑ-projected orientation field,
found by solving Eqn. 5, supplemented with boundary conditions based on the average spindle geometry (S.I. 3). (B) Vertical
(left) and horizontal (right) slices through the data shown in A. Error bars represent the discrepancy between LC-PolScope and
electron tomography estimates; solid black lines show theoretical predictions. (C) Selected director-director, density-density,
and director-density correlation functions, for LC-PolScope data (green circles), electron tomography data (ET, yellow squares),
and averaged (black diamonds). Error bars for LC-PolScope and electron tomography data are given by the standard error
over individual-spindle data sets; error bars in the averaged correlation functions indicate the discrepancy between the two
measurements. For the spatiotemporal correlations cnn(q0, ω) and ccc(q0, ω) (left column), only LC-PolScope data is available.
The thin black line shows fits to Eqns. (11), with parameters reported in Table 1.
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FIG. 4. Arrangement of microtubules in spindle cross-sections are predicted by the active liquid crystal theory without additional
fitting parameters. (A) Correlations in microtubule density are analyzed in the slice x = 0 perpendicular to the spindle axis,
obtained from electron tomography reconstructions. (B) Each orange dot indicates the intersection of a microtubule with the
plane x = 0; correlation analysis is restricted to the largest square region fully contained within the spindle boundary (indicated
by dashed black lines). (C) Experimentally determined radial correlations Rcc(qs) from electron tomography data (ET, black
points with error bars) are well fitted by the predictions of the active liquid crystal theory (solid black curve), using only fit
parameters previously obtained from correlation functions in the long-wavelength limit (Table 1). Black dashed curves indicate
the range of uncertainty in RCC(qs) consistent with estimated uncertainties in sc0, sn0 , D, K, and v1 (Materials & Methods).
The prediction agrees well with the data for wavenumbers qs ≲ 20 rad µm−1 (black arrow), corresponding to distances greater
than λ∗ = 2π/q∗s ≈ 0.3µm. Error bars indicate the standard error of the data in each bin.
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Parameter Name Symbol Value Units

Concentration noise amplitude sc0 0.0265± 0.0039 µm s−1/2

Director noise amplitude sn0 0.0110± 0.0005 µm s−1/2

Microtubule diffusion constant D 0.0043± 0.0023 µm2s−1

Nematic diffusivity K 0.0021± 0.0002 µm2s−1

Polar microtubule transport speed v1 8.4± 6.2 µm min−1

Microtubule turnover rate Θ0 0.047 s−1

TABLE I. Table of best-fit parameters for spindle material properties. The value of Θ0 was calculated from a weighted average
of previously-measured kinetochore and non-kinetochore microtubule catastrophe rates [13]. Estimates are found by fitting
combined electron tomography and LC-PolScope correlation functions (Fig. 3); uncertainties are found via non-replacement
subsampling Materials & Methods.
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I. ELECTRON TOMOGRAPHY DATA

A. Identification of Poles & Definition of Spindle Coordinate System

We identify the spindle poles with the positions of the centrioles, which are obtained directly from electron tomog-
raphy data [16]. For each data set, the straight line joining the poles defines the spindle long axis (x−axis) and the
distance between centrioles is taken as the interpolar distance 2d. The y− and z− axes are chosen arbitrarily.

B. Description of Microtubule Data

A complete electron tomography reconstruction consists of NMT microtubules. Microtubule i is described by an
ordered set Pi

m, where 1 ≤ m ≤Mi +1 points; the order of the points indicates their distance from one reference end
of the microtubule (chosen arbitrarily), measured along tubule arc-length. All subsequent calculations are performed
in a coordinate system where the origin is placed at the center of mass of the microtubule point cloud. The centroid
Ri

m and orientation N̂i
m of each the sub-segments in microtubule i is given by:

Ri
m =

1

2

(
Pi

m +Pi
m+1

)
N̂i

m =
Pi

m+1 −Pi
m∣∣Pi

m+1 −Pi
m

∣∣ . (S1)

Some basic statistics of the three electron tomography data sets are given in Fig. S2C; more detailed analysis, including
details of microtubule length distribution, curvature, and properties of kinetochore fibers, is given in references [13, 16].

C. Rescaling Spindle Coordinates to Match LC-PolScope Estimates of Pole Position

We observed that the average interpolar half-distance d calculated from our three electron tomography data sets is
smaller than the same quantity estimated from LC-PolScope data. We also noticed that our initial estimates of spatial
correlation functions, computed from electron tomography data, were correspondingly displaced along the horizontal
axis. These discrepancies could reflect random sample-to-sample variation, or could be due to systematic artifacts
associated with electron tomography sample preparation or data acquisition. Freeze-substitution electron microscopy
is known to cause significant sample shrinkage and deformation [42]. While we use Z-corrected ET coordinates correct
for this artifact [16] , the applied correction may not be fully accounted for sample shrinkage and deformation. To
account for the possibility of systematic error in the ET scaling, we defined a rescaling factor ψ,

ψ =
⟨d⟩Pol

⟨d⟩ET
≈ 1.44. (S2)

All subsequent analyses of ET data uses rescaled coordinates, Ri
m → ψRi

m.

D. Fitting Spindle Boundary to Prolate Ellipsoid

To estimate the dimensions of a single spindle from electron tomography data, we fit a prolate ellipsoid (with
long and short semi-axes a and b respectively) to the spindle boundary by finding the minimum-volume axis-aligned
ellipsoid that contains 90% of all points Ri

m for 1 ≤ m ≤Mi and 1 ≤ i ≤ Nseg.

E. Microtubule Cross-Sectional Density is Constant to Within ∼ 20% in the Analysis Volume

To investigate the extent to which microtubule density varies within the spindle, we plot the cross-sectional density
ρ2D as a function of position along the spindle long axis (Fig. S2). To estimate ρ2D(x), we compute the number of
microtubules that intersect in the plane of constant x, and divide by the area of the disk defined by the intersection
of that plane with the best-fit ellipsoid. All data sets show dips of around ∼ 20% near x = 0; this presumably
corresponds to the presence of metaphase chromosomes, which occupy a significant amount of the spindle volume and
thus reduce the average microtubule density at the metaphase plate (Fig. S2A).
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F. ẑ-Projected Microtubule Orientation in Individual Electron Tomography Data Sets is Consistent with
Predictions of the Active Liquid Crystal Theory

It was previously shown that the microtubule orientation in HeLa spindles, as estimated from electron tomography
data, is well-described by the predictions of the active nematic model [13]. To independently verify this result and to
facilitate direct comparisons with LC-PolScope data (S.I. II), we project the measured directors N̂i

m in each electron
tomography data set over ẑ and re-normalized to obtain a discrete 2D director field ni

m,

ni
m =

Pz{N̂i
m}

|Pz{N̂i
m}|

.

To remove the dependence of our estimate on the arbitrarily chosen projection axis (ẑ-axis), we perform a series of 10
rotations of the data about x̂, equally spaced between 0 and 2π, of to obtain 10 different estimates of ni

m and average
over all resulting projections. Projected orientation fields are well-fitted by the results of numerical solutions based
on the geometry of individual spindles (Sec. III B, Fig. S1).

II. LC-POLSCOPE DATA

A. Definition of Spindle Coordinate System

Our algorithm to define a spindle-referenced coordinate system for the LC-PolScope data comprises several steps
(Fig. S3). First, we perform an initial transformation of the LC-PolScope images such that, in each frame, the
origin is defined as the average position of the two centrioles (measured via epifluorescence), and the x̂-axis is defined
to be parallel to the line joining them. Due to finite time lag of the LC-PolScope hardware, several seconds go by
between acquisition of the epifluorescence image and acquisition of the the associated retardance and slow axis images.
Consequently, we find that our preliminary calculation of the spindle coordinate system does not adequately center
or align these channels (Fig. S3B). We therefore use the LC-PolScope retardance and slow-axis images to re-center
and re-orient the spindle. To do this, we manually crop a region of interest (ROI) that includes all positions of the
spindle over the course of the entire movie. Next, we apply a Gaussian blur (radius 2 µm) to each frame of the
retardance movie and binarize the resulting images using a threshold of half the maximum intensity in the cropped
image. Images are translated such that the center of brightness of the largest contiguous white region is at the origin.
Finally, we use the slow axis data to rotate the spindle such that its average orientation coincides with the horizontal
axis of the image (Fig. S3C). We use this spindle-referenced coordinate system for all subsequent calculations.

B. Fitting Spindle Boundary to Ellipse

For each LC-PolScope movie, we fit the boundary of the spindle to an ellipse with long and short semi-axes a
and b respectively. To robustly find the spindle boundary, we apply a series of classical image processing functions –
Gaussian convolution, gradient filtering, erosion, dilation, and adaptive binarization – to the LC-PolScope retardance
image. These algorithms are implemented in the Mathematica programming language; we use the same set of image
processing parameters in our analysis of all data sets. The complete edge-identification algorithm, together will all
image processing parameters used, is shown in Fig. S4. Finally, we fit the boundary points to an axis-aligned ellipse,
defined by (x

a

)2
+
(y
b

)2
= 1.

C. Comparison of Spindle Shape from LC-PolScope Retardance Images with Spindle Shape from Electron
Tomography Data

Table S1 shows a comparison of the average best-fit ellipse parameters found by LC-PolScope with the best-fit
ellipsoid parameters obtained from electron tomography data (S.I. ID). The LC-PolScope estimate for the spindle
long semi-axis a is ∼ 25% smaller than the corresponding electron tomography value, while the LC-PolScope estimate
of the spindle short axis is ∼ 25% larger. This difference is presumably due to the lower sensitivity of the LC-PolScope
to microtubules near the spindle poles compared to microtubules near the central spindle; the former tend to be less
perpendicular to the optical axis ẑ and thus contribute less to the retardance signal (next section).
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D. Time-Averaged Retardance and Orientation Fields from LC-PolScope Data Are Consistent with
Predictions of the Active Liquid Crystal Theory

It was previously shown that the microtubule orientation in HeLa spindles, as estimated from LC-PolScope data,
is well-described by the predictions of Eqn. 5 [13]. To independently replicate this finding, we performed a series
of numerical solutions of Eqn. 5 (S.I. III B). For each data set, we supplemented Eqn. 5 with a boundary condition
that forces the director to lie tangent to the 3D prolate ellipsoid with long and short semi-axes a and b, obtained as
described in the previous section. In these simulations, we treated the interpolar half-distance d as a fit parameter,
selecting the best fit spindle by minimization of the quantity∫

A

| exp (2iθ(x, y))− exp (2iθ0(x, y))|2dA,

θ0(x, y) is the simulated angle of the 2D nematic field found by projecting the 3D solution over the ẑ-axis, and the
integral is evaluated over the area A inside the spindle boundary. Using the best-fit value of d, the predicted slow
axis field θ0(x, y) provides good fits to time-averaged slow axis measurements from individual spindles (Fig. S5A&C).

To compare the predictions of the simulation with our retardance data, we compute the expected retardance profile
using an and-hoc generalization of Eqn. 8 that takes into account the fact that microtubules perpendicular to the
optical axis (N̂ · ẑ ≈ 0) contribute maximally to the retardance signal, while microtubules parallel or antiparallel to
it (N̂ · ẑ ≈ ±1) do not contribute,

r(r, t) ≈ A0

∫
T

cos(2ϕ)ρ2D(R, t)dz; ,

where ϕ = arccos (N̂ · ẑ). To facilitate comparison of this relation with LC-PolScope data, we make the further
approximation ρ2D(R, t) = ⟨ρ2D⟩, which we take to be constant in space and time. Since ϕ is fully determined by
the numerical simulations (using the previously-fitted value of d), and A0 is a known constant, the only remaining fit
parameter is ⟨ρ2D⟩. The retardance signal shows significant departures from the predicted form (Fig. S5B&D). This is
presumably due to structural features, such as metaphase chromosomes, that cause persistent deviations from uniform
density. Nevertheless, important large-scale patterns, such as higher retardance near the central spindle than at the
boundaries, are captured by the model. We can also compare the fitted values of ⟨ρ2D⟩, averaged over all spindles we
imaged, to those directly measured from electron tomography data (Fig. S2). These values agree within experimental
uncertainty: ⟨ρ2D⟩ = (13.6±0.7)µm−2 from LC-PolScope retardance data, versus ⟨ρ2D⟩ = (11.7±0.8)µm−2 from ET
data (mean ± standard error, calculated over nPol = 11 spindles for LC-PolScope and nET = 3 spindles for electron
tomography). Student’s T-Test (two-tailed) gives p = 0.19, indicating no statistically significant difference between
the means of the ET and LC-PolScope data sets.

E. Estimating the Lateral Optical Impulse Function of LC-PolScope

At length scales comparable to the illumination wavelength, λim = 546 nm, spurious correlations are induced in
LC-PolScope data due to diffraction. To correct for these artifacts, we deconvolved our calculated spatial correlation
functions with the lateral optical impulse function (OIF) of the LC-PolScope; this quantity is equivalent to the
lateral point spread function (PSF) in fluorescence microscopy. Unfortunately, no rigorous theory exists that allows
straightforward estimation of the OIF for “semi-coherent” imaging techniques like LC-PolScope [43]. We therefore
estimated the lateral OIF for our system experimentally by imaging in vitro-assembled microtubule bundles with
diameters much less than λim. To manufacture these bundles, we first followed previously established protocols to
prepare a suspension of long (average length ≳ 2µm), stabilized microtubules [44]. Briefly, we prepared a solution
containing 0.6 mM GMPCPP, 1.2 mM dithiothreitol (DTT), and 0.2 mg/mL Alexa-647-labeled tubulin in M2B buffer.
After preparing the mixture as described in [44], we incubated it for an additional 8-12 hours at room temperature. To
promote the formation of microtubule bundles, we next diluted the stabilized microtubule suspension 10× with room
temperature M2B buffer, and immediately added polyethylene glycol 20 kD to a final concentration of 1% w/v. After
incubating for at least 1 hr, we confined 2-5µL of the suspension between parallel cover slips; this results in cover slips
spaced ∼ 10µm apart. As the droplet spreads between the cover slips, some microtubule bundles spontaneously and
irreversibly stick to the enclosing glass surfaces. The suspension-filled chamber is sealed with UV-cure glue (Norland)
and placed on a microscope equipped with LC-PolScope and epifluorescence modes.

We then imaged the surface-bound microtubule bundles (Fig.S6A). To estimate the LC-PolScope OIF from the
resulting data, we follow the analysis in [22]. We first used the retardance signal to estimate the number of microtubules
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in the bundle (Fig.S6) and select for further analysis bundles containing no more than 12 microtubules. Assuming
microtubules in these bundles are close-packed, their diameters should be ≲ 2

√
3d0 ≈ 90 nm, where d0 ≈ 25 nm

is the diameter of an individual microtubule [45, 46] (Fig.S6B). Since the bundle diameter is significantly less than
λim, the effect of the finite size of the bundle is minimized, and we may approximate the bundle as a line source of
birefringence. To find the LC-PolScope OIF, we plot the projected retardance r cos 2θ as a function of y, the direction
perpendicular to the bundle axis, for n = 8 bundles containing between 3 and 12 microtubules each (Fig. S6). We
next take the average of these curves and fit to a Gaussian (Fig.S6C). The best-fit Gaussian has a width σ0 ≈ 61
nm, comparable to previous measurements [22]. This value of σ0 corresponds to an optical resolution of ≈ 144
nm, the full width at half maximum (FWHM) of the Gaussian [47]. Finally, we compared the lateral LC-PolScope
resolution to that of the far-red epifluorescence channel (excitation maximum λex ≈ 660 nm), obtained by fitting
the average epifluorescence intensity along y. We find that the best-fit Gaussian has standard deviation σEpi

0 ≈ 152
nm, corresponding to a FWHM resolution of ≈ 358 nm. The significantly enhanced resolution of the LC-PolScope
compared to epifluorescence is presumably due to the semi-coherent nature of the data, which combines intensity
(retardance) and phase (slow axis) information.

III. ACTIVE LIQUID CRYSTAL THEORY OF THE HELA SPINDLE

A. Full Equations of Motion, Including Noise Terms

The deterministic terms in our coarse-grained model are summarized by Eqns. (3) and (4) in the Main Text. In terms
of the normalized concentration C = ρ/ρ0 = Θρ/Γ0, the complete model, including independent Gaussian-distributed
noise in both fields, may be written

∂C

∂t
= Θ(1− C)−∇ ·

[
−D∇C + v1CN̂

]
+ Sc(R, t); (S3)

∂Nα

∂t
= (δαβ −NαNβ) [K∇2Nβ + SN

β (R, t)], (S4)

where the noise terms are fully characterized by the equations

⟨Sc(R, t)⟩ = 0; ⟨Sc(R, t)Sc(R′, t′)⟩ = (SC
0 )2δαβδ(R−R′)δ(t− t′);

⟨SN
α (R, t)⟩ = 0; ⟨SN

α (R, t)S
N
β (R

′, t′)⟩ = (SN
0 )

2δαβδ(R−R′)δ(t− t′);

where α, β ∈ {y, z}, δαβ is the Kronecker delta, and δ(·) is the Dirac delta. Noise amplitudes are given by the
parameters SC

0 and SN
0 . These equations of motion are equivalent to those derived in reference [10], with one exception:

whereas that reference includes noise in the director equation only, Eqns. (S3) and (S4) feature independent noise in
both equations.

B. Numerical Estimation of Steady-State Director Field

1. Steady-State Equation for Director Angle in Cylindrical Coordinates

In order to compare the predictions of our model with the rotation-averaged or time-averaged orientation fields we
measured, we numerically solved Eqn. 5 in the Main Text, supplemented with boundary conditions appropriate for
HeLa spindles. Under the assumption of cylindrical symmetry in the x̂ axis, Eqn. 5 in may be written in terms of the
polar and azimuthal fields in the Φ = 0 plane, θ(x, s) and ϕ(x, s) [48]. In cylindrical coordinates (x, s,Φ),

N̂(x, s) = cos θ(x, s)x̂+ sin θ(x, s) cosϕ(x, s)̂s+ sin θ(x, s) sinϕ(x, s)Φ̂, (S5)

where s =
√
y2 + z2 and Φ = tan−1(y/z) are the radial and azimuthal coordinates. This parameterization enforces

the unit-length constraint |N̂| = 1. The governing equations for θ(x, s) and ϕ(x, s) are obtained by minimizing the
Frank elastic free energy under the one-constant approximation, in which all elastic moduli are set equal. This leads
to the vectorial Laplace equation (I− N̂N̂)∇2N̂ = 0 for the director field. Substituting the angular ansatz (Eqn. S5)
into this equation yields two coupled nonlinear partial differential equations for θ(x, s) and ϕ(x, s). In the twist-free
case (ϕ = 0), the director field lies entirely in the x-s plane and the system reduces to a single scalar equation for
θ(x, s) [48]:

θss +
1

s
θs + θxx =

sin θ cos θ

s2
. (S6)
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2. Numerical Solution

Using the Mathematica software package, we numerically solved Eqn. S6, supplemented with appropriate boundary
conditions. Key details include:

• For electron tomography data, Eqn. (S6) is solved separately for each spindle, using boundary conditions defined
by the spindle’s best-fit ellipsoidal boundary and the experimentally measured centriole positions (±d,0,0).

• For LC-PolScope data, Eqn. (S6) is solved separately for each spindle, using boundary conditions defined by the
spindle’s best-fit ellipsoidal boundary; the interpolar half-distance d is treated as a fit parameter. The best-fit
value of d is chosen by comparing the predicted orientation field with the experimentally measured slow axis
field.

• At the spindle boundary, the director lies tangent to the boundary.

• The poles (centrioles) are modeled as +1 defects. This is implemented numerically by forcing the nematic field
to lie perpendicular to the surface of two disks centered at (±d, 0) in the x − s plane. The disks are given a
nominal radius of 0.025 a, where a is the long semi-axis of the ellipsoidal boundary.

• To satisfy the requirements of topology, we place additional -1/2 defects at (±a, 0), i.e. at the left and right
extrema of the boundary ellipse. These features are implemented by smoothly switching the boundary condition
in the neighborhoods of the extrema of the ellipse, such that the director lies perpendicular to the boundary at
(±a, 0).

• We numerically solve Eqn. (S6) using the in-built Mathematica solver NDSolveValue[]. We use a custom-written
adaptive grid generator that refines the mesh in the vicinity of the topological defects. The solution is found
in the upper right quadrant (x > 0, s > 0), and mirrored through the x− and s−axes to generate a full
solution. Our results are robust to the details of adaptive grid generation, choice of the numerical integrator,
and topological defect enforcement.

C. Equations of Motion for Small Fluctuations About Steady State

To test whether Eqns. (S3) and (S4) accurately describe the patterns of fluctuations observed in the electron
tomography and LC-PolScope Data, we calculate the forms of these correlations predicted by the equations. We
analyze density fluctuations around a uniform steady state in both concentration and orientation,

C = 1 + δC(R, t); N̂ = x̂+ δN(R, t).

In the analysis boxes defined in the Main Text (Fig. 1), we find that the average deviation from uniform concentration
is ≲ 20%; the average deviation of the predicted director from horizontal is ≲ 0.2 rad; we therefore assume that
the assumption of uniform steady-state is reasonable. To analyze the relaxation of orientation fluctuations around a
strongly aligned nematic state, we expand the unit vector field as

N ≈


1− 1

2 (δN
2
y + δN2

z )

δNy

δNz

 , with δNy, δNz ≪ 1.

Substituting this ansatz into the projected evolution equation and retaining leading-order terms, we obtain equations
for the transverse components:

∂δNα

∂t
≈ K∇2δNα + SN

α , for α = y, z. (S7)

Similarly, we can derive the equation of motion of the microtubule density fluctuations δC,

∂δC

∂t
= −ΘδC +D∇2δC − v1∇ · [δN+ δCx̂] + Sc(R, t) (S8)
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D. Fourier-Space Equations of Motion; (3+1)D Correlation Functions

Taking the Fourier transform of Eqns. (S8) and (S7), we obtain

−iωδ̃C = −Θδ̃C −DQ2δ̃C + iv1[qxδ̃C + qy δ̃Ny + qz δ̃Nz] + S̃C(Q, ω);

−iωδ̃Ny = −KQ2δ̃Ny + S̃N
y (Q, ω); −iωδ̃Nz = −KQ2δ̃Nz + S̃N

z (Q, ω).

Here, δÑα(Q, ω) is the Fourier transform of δNα(R, t) in space and time, and S̃n
y (ω,Q) is the Fourier transform of

Sn
y (R, t) for α ∈ {y, z}. The Fourier-transformed noise fields satisfy

⟨S̃C(Q1, t)⟩ = 0; ⟨S̃C(Q1, t)S̃
C(Q2, t

′)⟩ = (SC
0 )2δ(Q1 +Q2)δ(ω1 + ω2);

⟨S̃N
α (Q1, t)⟩ = 0; ⟨S̃N

α (Q1, t)S̃
N
β (Q2, t

′)⟩ = (SN
0 )

2δαβδ(Q1 +Q2)δ(ω1 + ω2);

These equations may be solved to find the Fourier-transformed fluctuations,

δ̃C =
iv1(qy δ̃Ny + qz δ̃Nz) + S̃C(Q, ω)

−i(ω + v1qx) + Θ +DQ2
; δ̃Ny =

S̃N
y (Q, ω)

−iω +KQ2
; δ̃Nz =

S̃N
z (Q, ω)

−iω +KQ2
,

from which we obtain the spatiotemporal correlation functions CCC(Q, ω), CNN(Q, ω), and CNyC(Q, ω),

CCC(Q, ω) =
1

V τ0
δ̃C(Q, ω)δ̃C(−Q,−ω) =

(q2y + q2z)v
2
1(S

N
0 )

2 + (K2Q4 + ω2)(SC
0 )2

(K2Q4 + ω2) ((qxv1 + ω)2 + (DQ2 +Θ)2)
;

CNN(Q, ω) =
1

V τ0
δ̃Ny(Q, ω)δ̃Ny(−Q,−ω) = 1

V τ0
δ̃Nz(Q, ω)δ̃Nz(−Q,−ω) = (SN

0 )
2

ω2 +K2Q4
;

CNyC(Q, ω) =
1

V τ0
δ̃Ny(Q, ω)δ̃C(−Q,−ω) = − iqyv1(S

N
0 )

2

(K2Q4 + ω2)((DQ2 +Θ) + i(qxv1 + ω))
, (S9)

where V is the analysis volume and τ0 is the total time over with the signal was recorded. The equal-time correlation
functions SCC(Q), SNN(Q), and SNyC(Q, ω) are obtained by integrating over the frequency domain,

SCC(Q) =
1

2π

∫
CCC(Q, ω)dω =

(SC
0 )2

2(DQ2 +Θ)
+

(q2y + q2z)(S
N
0 )

2v21((D +K)Q2 +Θ)

2KQ2(DQ2 +Θ)
(
q2xv

2
1 + ((D +K)Q2 +Θ)2

) ;
SNN(Q) =

1

2π

∫
CNN(Q, ω)dω =

(SC
0 )2

2KQ2
;

SNyC(Q) =
1

2π

∫
CNyC(Q, ω)dω = − iqyv1(S

N
0 )

2

2KQ2((D +K)Q2 + iqxv1 +Θ)
. (S10)

E. Correlation Functions for ẑ-Projected Fields

Unlike electron tomography, the LC-PolScope does not allow measurement of the full 3D director field N̂(R).
Rather, it measures the orientation field projected over the optical axis ẑ (Main Text Eqns. (8) and (9)). According to
the projection-slice theorem of Fourier analysis, this is equivalent to taking a long wavelength limit in the ẑ direction,
i.e. qz → 0 [49]. In operator notation,

Sqz=0FTxyz = FTxyPz, (S11)

where Sqz=0 is the slice operator that sets qz → 0 in its argument function, FTxy and FTxyz are 2D and 3D spatial
Fourier transforms, Pz is the projection operator over z, Pz{f(x, y, z, t)} =

∫
f(x, y, z, t)dz. With this notation,

δ̃Ny(qx, qy, qz → 0, ω) = FTxyPzδNy ≈ FTxy

∫
Lz

δNydz ≈ Lz δ̃ny(qx, qy, ω),

where Lz is the sample thickness along ẑ. In the above expression, the first approximation enters because of the finite
sample thickness, and the second arises because n̂ is a normalized projection rather than an absolute projection, see
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Eqns. 1 of the Main Text. (The second relation is accurate to first order in δN, however.) Applying the limit qz → 0
to Eqns. S9 and S9 yields

cnn(q, ω) ≡
1

V2+1
δ̃ny(q, ω)

∗δ̃ny(q, ω) =
(sn0)

2

ω2 +K2q4
; snn(q) =

(sn0)
2

2Kq2
,

where V2+1 = V3+1/Lz is the (2+1)D system volume, and (sn0)
2 ≡ (SN

0 )
2/Lz.

To obtain an equivalent expression for retardance fluctuations, we use equation Main Text Eqn. 8, and make the
additional assumption that the time-averaged retardance field is constant within a sample of constant thickness Lz,
⟨r(r, t)⟩t = r0 ≈ A0ρ0λLz, where the definitions of A0, ρ0, and λ are given in the Main Text. We can express
normalized retardance fluctuations as follows,

δc(r, t) ≡ δr(r, t)

r0
=
A0

r0

∫
Lz

δρ2D(R, t)dz =
A0λ

r0

∫
Lz

δC(R, t)dz =
1

Lz

∫
Lz

δC(R, t)dz.

We can then apply the projection-slice theorem to obtain

δ̃C(qx, qy, qz → 0, ω) = Lz δ̃c(q, ω),

and thus the correlation functions given in the Main Text,

ccc(q, ω) =
q2yv

2
1(s

n
0)

2 + (K2q4 + ω2)(sc0)
2

(K2q4 + ω2) ((qxv1 + ω)2 + (Dq2 +Θ)2)
;

scc(q) =
(sc0)

2

2(Dq2 +Θ)
+

q2y(s
n
0)

2v21((D +K)q2 +Θ)

2Kq2(Dq2 +Θ)
(
q2xv

2
1 + ((D +K)q2 +Θ)2

) ;
snc(q) =

iqyv1(s
n
0)

2

2Kq2((D +K)q2 + iqxv1 +Θ)
,

where (sc0)
2 ≡ (SC

0 )2/Lz.

F. Constant-x Slice Correlation Function RCC(qr)

The constant-x slice correlation function RCC(qr) is obtained by further marginalizing SCC(Q) over the spindle
axis direction x̂,

RCC(q⊥) =
1

2π

∫
SCC(Q)dqx.

Substituting the explicit form of the structure factor Scc(Q), we get

RCC(Q) =
1

2π

∫ (
(SC

0 )2

2(DQ2 +Θ)
+

(q2y + q2z)(S
N
0 )

2v21((D +K)Q2 +Θ)

2KQ2(DQ2 +Θ)
(
q2xv

2
1 + ((D +K)Q2 +Θ)2

)) dqx.
The second term in the integrand can be decomposed into analytically integrable components, leading to the expres-
sion:

RCC(Q) =
Lz(s

c
0)

2

4
√
D
√
Dq2⊥ +Θ

+
Lz(s

n
0)

2

2π

∫
(T1(qx,q⊥) + T2(qx,q⊥))dqx,

where sc0 and sn0 are the projected variables as described in the previous section. The functions T1(qx, q⊥) and
T2(qx, q⊥) are described as follows:

T1(qx,q⊥) =
q′′2s

2D(D +K)2(q2x + e21)
(
q2xw

2 + (q2x + q′2s )2
) ,

T2(qx,q⊥) =
q′′2s

2K(D +K)2(q2x + e22)
(
q2xw

2 + (q2x + q′2s )2
) ,

where qs = |q⊥|;K ′ = D + K; R =
√
4q2s′ + w2; α± =

√
2q2s′ + w(w ±R); α = α+ + α−; α′(qs) =

w (R(α− − α+) + wα) ; q2s′ = q2s + Θ
D+K ; w2 =

v2
1

(D+K)2 ; e
2
1 = q2s + Θ

D ; e22 = q2s ; q
2
s′′ = q2sv

2
1 . Evaluating this inte-

gral, and using the fact that that the predicted correlation function is isotropic in the plane perpendicular to the
x̂-axis, RCC(q⊥) = RCC(qs), where qs = (q2y + qz)

1/2, gives Eqn. (13) in the Main Text.
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1. Applicability of These Approximations to LC-PolScope Data

Near the central spindle, where we calculate the projected electron tomography correlation functions, all the approx-
imations in the above calculations should be reasonably accurate. In our computations of LC-PolScope correlation
functions, however, we use an analysis box that is displaced from the central spindle (Main Text Fig. 2D). We do
this to minimize artifacts associated with the presence of chromosomes at the metaphase plate. However, this choice
means that the analysis box may include one pole and/or the spindle boundary. Near those features, a number of key
assumptions that we used to derive the correlation functions fail. These include:

• Near the poles and the spindle boundary, the director field is not well-approximated by small perturbations
about the long axis direction, N̂ · x̂ ̸≈ 1, and the component of the fluctuation parallel to the spindle axis, δnx,
is comparable in magnitude to the perpendicular component δny.

• Near the poles and the spindle boundary, the retardance formula given in the Main Text (Eqn. (8)) is expected
to fail; an expression such as Eqn. (II D), that takes into account the finite angle between the director and the
image plane, is more appropriate.

• Near the boundary, the spindle thickness in the ẑ-direction goes to zero; this conflicts with the assumption of
constant sample thickness in the calculation of the projected correlation functions.

Given all of these complications, which we either ignore or correct for in an ad-hoc manner, the excellent agreement
between the correlation functions calculated from LC-PolScope data and the numerically projected correlation func-
tions calculated from electron tomography is remarkable, and may indicate that the fluctuation signals are dominated
by microtubules in that are close enough to the central-spindle that the approximations remain valid.

2. ẑ-Projected Correlation Functions for Minimal Model, Without Active Polar Transport

A minimal model for correlation functions may be written in which density and orientation dynamics are governed by
independent local processes: microtubule turnover, diffusion, and nematic elasticity. This minimal theory is obtained
by setting v1 = 0 in Main Text Eqns. (11),

ccc(q, ω) =
(sc0)

2

ω2 + (Dq2 +Θ)2
; cnn(q, ω) =

(sn0)
2

ω2 +K2q4
;

scc(q) =
(sc0)

2

2(Dq2 +Θ)
; snn(q) =

(sn0)
2

2Kq2
; snc(q) = 0.



25

Parameter ET LC-PolScope

Long semi-axis a (µm) 8.8± 1.0 7.1± 0.3

Short semi-axis b (µm) 5.2± 0.2 5.6± 0.3

Interpolar half-spacing d (µm) 6.5± 0.3 6.5† ± 0.7

TABLE S1. Comparison of average spindle geometries, as estimated from electron tomography (ET) and LC-PolScope data.
Each parameter (except the interpolar half-spacing in the electron tomography column) is estimated by taking the mean over
all spindles we analyzed; uncertainty is estimated form the standard error in the mean. † Due to our rescaling of electron
tomography coordinates (S.I. I C), the mean interpolar half-spacing in the electron tomography data is not estimated but is
instead defined to be equal to the mean interpolar half-spacing estimated from LC-PolScope. Un-rescaled electron tomography
parameters can be calculated by dividing all values by ψ = 1.44.
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FIG. S1. Comparison of microtubule orientation, measured by electron tomography, with predictions of the active liquid crystal
model. (A) Numerical solution of Main Text Eqn. 5 (left) with ẑ-projected orientation fields (right) for each of the three electron
tomography data sets we analyzed. In all images, white circles indicate the positions of the centrioles. In the images on the
right, data is only shown inside the ellipse that defines the spindle boundary (S.I. I D). In all images, thin lines in the interior of
the ellipse show streamlines of the projected orientation field. (B) Vertical and horizontal slices of the experimentally measured
projected orientation field (points) show good agreement with predictions of the numerical solution (thin lines). Vertical slices
are taken at y = − 3a

4
,−a

2
; horizontal slices are taken at −a

4
and x = − 3b

4
,− b

2
, and − b

4
.
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A
Spindle 1 Spindle 2 Spindle 3

NMT 4067 7204 5665

Nseg 

(whole spindle) 478399 801122 658239

Nseg 

(analysis box) 172742 292646 210619

a (μm) 6.15 9.12 7.85

b (μm) 5.23 6.03 5.58

d (μm) 5.05 7.32 6.68

⟨𝜌2D⟩ (μm-2) 9.79 6.32 6.57

x
y

z

C

Spindle 1
Spindle 2 
Spindle 3 

B

FIG. S2. Cross-sectional microtubule density profiles and summary statistics for the three electron tomography-reconstructed
spindles we analyzed. (A) The microtubule cross-section density ⟨ρ2D⟩y,z(x) is computed by calculating the number of micro-
tubules that intersect with a constant-x plane, and dividing by the cross-sectional area of the spindle at that position. (B) Plots
of ⟨ρ2D⟩y,z(x) for each of the three electron tomography reconstructions; x-coordinates are plotted relative to each spindle’s
long semi-axis a. The dip near the origin corresponds to the presence of chromosomes at the metaphase plate. Black dashed
lines indicate the boundaries of the analysis box, which has dimensions 2a√

3
× 2b√

3
× 2b√

3
. (C) Shape and microtubule density

statistics for each spindle. The average density ⟨ρ2D⟩ is computed in the analysis box, i.e. between the dashed vertical lines in
panel B.
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FIG. S3. Definition of spindle-referenced coordinate system for LC-PolScope images. (A) Original images from a sample
time series, showing retardance, slow axis, and epifluorescence. Green arrows in the t = 0 epifluorescence image indicate the
centrioles (EGFP:centrin). (B) Results of the first stage of coordinate system identification, where the average position of the
centrioles is positioned at the origin (center of image), and the line joining the centrioles lies along the x̂-axis. (C) Results of
the later stages of image alignment, in which the center of brightness of the spindle (i.e. the centroid of a binarized mask of
the retardance image) defines the origin, and the spindle is rotated such that the average angle inside the body of the spindle
defines the x̂-axis.
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FIG. S4. Fitting the spindle boundary from LC-PolScope retardance image. From left to right: we begin with the time averaged
retardance image, apply a gradient filter (radius 1µm) followed by a Gaussian filter (radius 0.5µm). We then apply a local
adaptive binarization algorithm (radius 4µm), followed by erosion (1.5µm), dilation (1µm), and a filling transform. We then
find the edge of the white region (solid white curve), and fit it to an axis-aligned ellipse (dashed white curve). Scale bar 5µm.
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FIG. S5. Comparison of LC-PolScope data with best-fit numerical solutions of the model for a singe spindle. (A) Time-
averaged LC-PolScope orientation data for a typical spindle, plotted alongside the prediction of the numerical solution of the
model (Eqn. 5), using the geometry of that spindle to define boundary conditions. In the numerical solution, the defect position
[white circles at (±5.6µm, 0)] is treated as a fit parameter; it is chosen to minimize the difference between the experimentally
observed and the numerically predicted orientation field. (B) Time-averaged LC-PolScope retardance data for the same spindle,
plotted alongside the predictions of the numerical solution. To scale the numerical solution model to the data, we use a single
fit parameter equivalent to the average microtubule cross-sectional density ⟨ρ2D⟩ (S.I. IID). (C & D) Vertical and horizontal
slices through the slow axis and retardance data. Solid lines show the predictions of the model, points show LC-PolScope
data. Insets in the top left of each plot indicate the positions of the slices. Vertical slices are taken at x = − 3a

4
, −a

2
, and −a

4
;

horizontal slices are taken at y = − 3b
4

, − b
2
, and − b

4
, where a and b are the long and short semi-axes of the ellipse that best fits

the spindle boundary (S.I. II B).
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FIG. S6. Characterizing the lateral optical impulse function of the LC-PolScope. (A) Top: Epifluorescence, retardance r, and
slow axis θ images of a microtubule bundle bound to a glass cover slip. Inset: Near the central axis of the bundle, the optical
slow axis is roughly parallel to the bundle; ∼250 nm away from the bundle axis, the slow axis is perpendicular to the bundle.
Side length of inset box = 1µm. (B) Profiles of epifluorescence intensity, r, cos (2θ), and projected retardance r cos (2θ) in
the direction ŷ perpendicular to the bundle, in a coordinate system where the origin is positioned at the center of the inset
box shown in A. From the retardance profile r(y), we estimate that the bundle contains A−1

0

∫
r(y)dy ≈ 11 microtubules.

Secondary peaks in the retardance profile are marked with black arrows. (C) Top: Epifluorescence profiles, centered at y = 0
and normalized by their maximum values, for n = 9 different bundles, each containing between 3 and 12 microtubules (faint,
continuous colored curves); average epifluorescence profile (black dotted curve); best fit Gaussian (solid black curve, σ0 = 152
nm). Bottom: Projected retardance profiles, centered at y = 0 and normalized by their maximum values, for the same bundles
(faint, continuous colored curves); average normalized projected retardance profile (black dotted curve); best fit Gaussian (solid
black curve, σ0 = 61 nm).
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