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Learning physically consistent differential equation models from data using group sparsity
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We propose a statistical learning framework based on group-sparse regression that can be used to (i) enforce
conservation laws, (ii) ensure model equivalence, and (iii) guarantee symmetries when learning or inferring
differential-equation models from data. Directly learning interpretable mathematical models from data has
emerged as a valuable modeling approach. However, in areas such as biology, high noise levels, sensor-induced
correlations, and strong intersystem variability can render data-driven models nonsensical or physically incon-
sistent without additional constraints on the model structure. Hence, it is important to leverage prior knowledge
from physical principles to learn biologically plausible and physically consistent models rather than models that
simply fit the data best. We present the group iterative hard thresholding algorithm and use stability selection to
infer physically consistent models with minimal parameter tuning. We show several applications from systems
biology that demonstrate the benefits of enforcing priors in data-driven modeling.
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I. INTRODUCTION

Mathematical modeling is fundamental to understanding
and predicting natural phenomena. Usually, mathematical
models are formulated from first principles, such as symme-
tries and conservation laws. This classic approach of modeling
natural systems has been successful in many domains of
science amenable to mathematical treatment. However, in do-
mains like biology, the success of first-principles modeling
is limited [1–4]. This is mostly attributed to the “complex-
ity” of biological systems where nonlinearity, stochasticity,
multiscale coupling, nonequilibrium behavior, and self-
organization can dominate. Formulating mathematical models
from first principles is difficult in complex systems, and the
resulting models often have many unknown parameters.

Data-driven modeling has thus emerged as a comple-
mentary approach to first-principles modeling. Data-driven
analysis and forecasting of complex systems were made pos-
sible by unprecedented advances in imaging and measurement
technology, computing power, and algorithmic innovations.
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While purely data-driven models, like reservoir computing,
can be successful in predicting future behavior [5], such
“black-box” models are often difficult to interpret for do-
main scientists. This raises the question how interpretable
mathematical models, such as ordinary differential equa-
tions (ODEs) or partial differential equations (PDEs), can be
learned directly from data.

The idea of algorithmic inference of differential-equation
models from data originated in the field of time-series analysis
[6,7]. Early works used least-squares fitting to estimate PDE
coefficients from spatiotemporal data [8,9]. Many different
approaches have since been proposed, e.g., Bayesian networks
[10], linear dynamic models [11], recurrent neural networks
[12], symbolic regression [13,14], sparse regression [15,16],
Gaussian processes [17], and deep learning [18]. Methods
based on sparse regression have been particularly success-
ful, owing to their simplicity, computational efficiency, and
applicability in the data-scarce regime [19]. They have there-
fore found applications in many domains ranging from optics
[20] to plasma physics [21], fluid mechanics [22], chemical
physics [23], aerospace engineering [24], and biology [19,25].
The sparse-regression methodology has also been extended
to incorporate control [26], implicit dynamics [25], paramet-
ric dependences [27], stochastic dynamics [28], discrepancy
models [29], and multiscale physics [30]. Algorithms based
on integral terms [31], automatic differentiation [32], and
weak formulations [33] have increased regression robustness
by avoiding high-order derivatives of noisy data. All of these
developments have corroborated the feasibility of data-driven
learning of interpretable mathematical models.
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Given the feasibility of data-driven modeling and the
historic success of first-principles modeling, it seems natural
to try combine the two. This requires methods to incorporate
or enforce first-principle constraints, like conservation laws
and symmetries, into the data-driven inference problem. First
attempts in this direction used block-diagonal dictionaries
with group sparsity to avoid model discrepancy [29,34–36]
and to infer PDEs with varying coefficients [27]. However,
there are many more priors one may want to exploit when
modeling complex systems, including information about
symmetries in interactions, knowledge of conservation
laws, dimensional similarities, or awareness of spatially and
temporally varying latent variables. Such prior knowledge
can come from first principles or from model assumptions
or hypotheses. To date, there is no statistical inference
framework available that would allow flexible inclusion of
different types of priors as hard constraints in data-driven
inference of differential equations models.

Here we present a statistical learning framework based on
group sparsity to enforce a wide range of physical or mod-
eling priors in the regression problem for robust inference
of ODE and PDE models from modest amounts of noisy
data. We present three representative examples from systems
biology to demonstrate how information about conservation
laws, latent variables, and symmetries can be encoded into
grouped features of a sparse-regression formulation. We there-
fore present numerical experiments using a mass-conserving
ODE model of Janus kinase–signal transducer and activator
of transcription (JAK-STAT) signaling in cells, a mechanical
transport model for membrane proteins, and λ-ω reaction-
diffusion systems, respectively. We approximately solve the
resulting nonconvex optimization problems using the group it-
erative hard thresholding (GIHT) algorithm presented here, in
combination with stability selection for statistically consistent
model identification [19]. We show that stability selection in
combination with GIHT enables robust model inference from
limited noisy data.

II. PROBLEM FORMULATION

We aim to learn the functional form of a governing ODE
or PDE from data about the corresponding dynamics. We
consider the following canonical form, where the left-hand
side is a first derivative in time and the right-hand side is a
nonlinear function N of space x, time t , and derivatives:

∂ui

∂t
= N

(
x, t, �(x, t ), ui,

∂ui

∂x j
,

∂2ui

∂xi∂x j
,
∂2ui

∂x2
j

, . . .

)
. (1)

The quantity u = (ui ) is the state variable of interest (e.g.,
velocity, concentration, or pressure) and �(x, t ) is the set
of parameters of the equation, such as diffusion constants or
viscosity. The dependence of � on (x, t ) allows for equations
with varying coefficients in both space and time. Without loss
of generality, N (·) can be written as a linear combination
of potentially nonlinear terms. Common models like Navier-
Stokes, advection, active mechanochemistry, and reaction-
diffusion models are represented by this canonical form. Mod-
els requiring a different left-hand side (e.g., wave equations)
can be expressed using suitably adjusted canonical forms.

The goal of equation inference [15,16] is to find a specific
instance of this canonical differential equation from given
data. Data are given as measured or simulated values û(xi, t j )
at discrete locations xi and time points t j . These data points
may contain noise, e.g., from measurement uncertainties or
numerical errors. The question then is which right-hand side
N makes Eq. (1) describe the dynamics from which the data
are sampled, without describing the noise, in a way that is
statistically consistent and stable under data perturbation or
different realizations of the noise.

We follow the standard approach to equation inference,
constructing an overcomplete dictionary of possible right-
hand-side terms and approximating their values from the data
using discrete approximations of the derivatives [15,16] (e.g.,
finite differences, polynomial differentiation [16,27], or au-
tomatic differentiation [32]). For example, for a model with
a single scalar state variable u ∈ R, a dictionary of p ∈ N po-
tential terms numerically evaluated over n ∈ N data points is a
matrix � ∈ Rn×p. The canonical form of Eq. (1) then becomes⎡

⎢⎣
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ut
...
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︸ ︷︷ ︸
� ∈ Rn×p

ξ︸︷︷︸
∈Rp×1

, (2)

where subscripts denote derivatives with respect to the
subscripted variable. By default, we include in � all
differential operators and polynomial nonlinearities up to
and including order and degree 3. Each column of � contains
the discrete approximations of one such term at all n data
points. The vector ξ contains the unknown coefficients
[ξ0 ξ1 ξ2 ξ3 · · · ξp]

�
of the model.

For systems of differential equations, the dictionary � ∈
RN×P becomes block diagonal with pb blocks �b ∈ Rn×p [see,
for example, Fig. 2(a)]. In this case, we distinguish the number
p of potential terms in each block and the number P = pb p of
columns in the overall dictionary. Likewise, N = pbn.

In either case, the problem is to find a statistically con-
sistent ξ∗ such that the model in Eq. (2) fits the data while
being sparse, i.e., ‖ξ∗‖0 � p. This trade-off between model
simplicity and data fitting can be formulated as a regularized
optimization problem

ξ̂
λ = arg min

ξ
[h(ξ) + λr(ξ)], (3)

where ξ̂
λ

is the global minimizer, h(·) a smooth convex data-
fitting metric (e.g., least-squares or Huber loss), and r(·) a
regularization or penalty function with regularization constant
λ ∈ R+ that controls the trade-off between model simplicity
and fitting accuracy. The superscript λ to the estimated coef-
ficient vector ξ̂ indicates the dependence of the result on the
regularization parameter. The data-fitting metric measures the
distance (in some norm) between the model output for a given
ξ and the data. The regularization function measures model
complexity.

Here we use the following standard choice for the data-
fitting and regularization functions:

ξ̂
λ = arg min

ξ

[
1
2‖U t − �ξ‖2

2 + λ‖ξ‖0
]
. (4)
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By choosing r(ξ) = λ‖ξ‖0, we directly penalize the number of
terms on the right-hand side of the model, hence favoring sim-
pler models (Occam’s razor) that are easier to interpret. Such
sparsity-promoting regularization has been successful in ap-
plications of compressive sensing and signal processing. For
the data-fitting function, we choose the standard least-squares
metric, hence h(ξ) = 1

2‖U t − �ξ‖2
2, leading to models that fit

the data in the least-squares sense.

III. SOLUTION METHOD

Classic algorithms that efficiently compute locally optimal
solutions to Eq. (4) include greedy optimization strategies
[37], compressed sampling matching pursuit [38], subspace
pursuit [39], and iterative hard thresholding (IHT) [40]. To
avoid the problem of nonconvexity in the objective function,
a popular approach is to consider the convex relaxation of the
problem in Eq. (4) by replacing the ‖ · ‖0 term with r(ξ) =
‖ξ‖1 [41]. However, while this formulation benefits from the
availability of fast convex optimization algorithms, it does not
provide good approximations when right-hand-side terms in
Eq. (1) are correlated [42] and leads to biased estimates of
model coefficients [43], thus reducing model selection per-
formance [19]. Therefore, we directly consider the original
nonconvex problem in Eq. (4) and provide an algorithm to
approximately solve it while accounting for modeling priors
and guaranteeing statistically stable and consistent models.

A. Group-sparse regression

In addition to statistical stability, we require the learned
models to be consistent with prior knowledge about the
physics of the process that generated the data. Examples of
such priors one may want to impose are conservation laws,
symmetries, and knowledge about latent variables. While the
sparsity constraint is imposed as a soft constraint, these phys-
ical priors will be imposed as hard constraints on the model.
They amount to restrictions on the structure of the coefficient
vector ξ. We show here how the concept of group sparsity
[42,44] can be used to impose modeling priors in a sparse-
regression framework.

The concept of group sparsity assumes that prior knowl-
edge about the underlying system can be encoded by
partitioning model terms into m groups. During the inference
process, group sparsity then imposes that coefficients within
the same group can only enter or leave the statistical model
jointly. We additionally leverage the block-diagonal structure
of the dictionary matrix to allow for spatially or temporally
varying coefficients and for joint sparse regression of multiple
state variables.

Formally, given a partitioning of the coefficients ξk , k =
1, 2, . . . , P, into m groups gj , j = 1, 2, . . . , m, we thus con-
sider the optimization problem

ξ̂
λ = arg min

ξ

⎡
⎣1

2

∥∥∥∥∥U t −
m∑

j=1

�g j ξg j

∥∥∥∥∥
2

2

+λ

m∑
j=1

√
pgj 1(‖ξg j

‖2 �= 0)

]
, (5)

where �g j ∈ RN×pg j is the submatrix of � ∈ RN×P formed
by all columns corresponding to the coefficients in group
g j ⊆ {1, . . . , P} and ξg j

= {ξi : i ∈ g j} is the coefficient
vector ξ restricted to the index set gj of size pgj , i.e., |g j | =
pgj . The indicator function 1(·) over the ‖ · ‖2 norm encour-
ages sparsity on the group level [42]. For groups comprising
only a single element, this penalty reduces to the ‖ · ‖0-norm.
Here we restrict ourselves to nonoverlapping groups where
gi ∩ g j = ∅∀ i �= j = 1, . . . , m and

∑m
j=1 pgj = P. Exten-

sions to overlapping groups are possible [45] and discussed
in Sec. V. We solve the nonconvex problem in Eq. (5) using
the GIHT algorithm, which generalizes the standard IHT al-
gorithm as detailed in Appendix C.

B. Stability selection

Robust tuning of the regularization parameter λ is of fun-
damental importance for successful model discovery. Wrong
choices of λ result in incorrect equation models being identi-
fied, even if correct model discovery would have been possible
in principle given the data [25,46]. Common methods for
tuning λ include the Akaike information criterion (AIC) [47],
the (modified) Bayesian information criterion (BIC) [48], and
cross validation. While AIC or BIC model selection is useful
for combinatorial best-subset selection methods in low dimen-
sions, they typically deteriorate in high dimensions since they
rely on asymptotic considerations. Cross validation tends to
include many false-positive coefficients in the data-limited
regime [49].

In order to provide a robust model selection method for
the data-limited high-dimensional case, we leverage here
the statistical principle of stability selection, which tunes
λ so as to guarantee model stability under perturbation
random subsampling of the data [50]. We perform stabil-
ity selection by generating B random subsamples I∗

b , b =
1, . . . , B, of the data, using the GIHT algorithm to find the
set Ŝλ[I∗

b ] ⊆ {1, . . . , P} of coefficients (or groups) for every
data subsample I∗

b for different values of λ ranging over a
regularization path � = [λmax, λmin] with λmin = ελmax and
λmax = max j∈{1,...,m} 1

2‖��
g j

U t‖2
2 as computed for the group

least absolute shrinkage and selection operator (LASSO) [27].
Typical values of ε range from 0.1 to 0.01 with the path
discretized evenly on a logarithmic scale. The probability that
group j overlaps with the coefficients selected for a given λ is
approximately [50]

	̂λ
g j

= P[g j ∩ Ŝλ[I∗
b ] �= ∅] (6a)

≈ 1

B

B∑
b=1

1(g j ∩ Ŝλ[I∗
b ] �= ∅), g j ⊆ {1, . . . , P}. (6b)

This is the importance measure [50] for group j. Plotting
this importance measure as a function of λ ∈ � provides an
interpretable way to assess the robustness of the estimation
across levels of regularization in a so-called stability plot [50].

To select a final model, stability selection chooses the set of
stable coefficients (or groups) Ŝstable = { j : 	̂λs

g j
> πth}. This

means that we search for the components (groups) in the dic-
tionary that consistently appear with probability greater than
πth when repeatedly solving the sparse-regression problem in
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Eq. (5) for different random subsets of the data. The threshold
probability πth controls the type I error of false positives
according to [51]

πth = 1

2
+

( q
pg

)2

2
(P

pg

)
Efp

, (7)

where Efp is the upper bound on the expected number of false
positives and q is the average number of selected variables
(i.e., nonzero components of ξ) along the regularization path
[50]. The group size pg = pgj , j = 1, . . . , m, if all groups are
of equal size; otherwise we set pg = 1 [51]. For a fixed value
of πth, we use this relation to find a λs for which a given bound
on the expected number of false positives, Efp, is achieved.
Equation (7) therefore provides an elegant way of determining
the regularization constant based on the importance measure
and the intuitively defined parameters Efp and πth. Throughout
this work, we set πth = 0.8 and Efp = 1. For the examples
shown in this paper, we empirically find that regularization
paths with ε = 0.1 are sufficient to find a solution to Eq. (7)
for these parameters. Alternatively, one can determine πth

and ε by visual inspection of a stability plot, which usually
shows a clear separation between two clusters of coefficients
of different stability.

Stability selection not only removes the necessity to manu-
ally tune λ, but also ensures robustness against data sampling
and noise in the data. All of these properties are required for
statistical consistency in the sense that the inferred models
are guaranteed to become accurate with high probability for
increasing data size [10].

IV. APPLICATIONS

We present three different modeling examples from sys-
tems biology that illustrate the utility of priors in data-driven
modeling. Each example highlights a different type of prior
knowledge to be enforced. In order to benchmark the accuracy
and robustness of model inference, we need to know the
ground-truth model. We therefore generate synthetic data by
numerically solving known models and see how well we can
recover those models again purely from the data. To emulate
noisy measurements from real-world experiments, we corrupt
the simulated data u(x, t ) with additive Gaussian noise û =
u + ση(0, θ ), where η is a vector of elementwise independent
and identically distributed Gaussian random numbers with
mean zero and empirical variance θ = Var{u1, . . . , uN } of the
simulated data. The constant σ defines the noise level. In
line with previous works, we use polynomial differentiation
[16,27] to approximate the spatial and temporal derivatives in
the dictionary from the noise input data û.

A. Enforcing mass conservation in the JAK-STAT reaction
pathway for signal transduction

Signal transduction pathways are the engines of chemical
information processing in living biological cells. Using meth-
ods from biochemistry and systems biology, the constituent
molecules of many signaling pathways have been identified.
However, identifying the topology of these chemical reaction
networks remains challenging. It typically involves building

mathematical models of hypothetical reaction networks and
comparing their predictions with the data. A popular choice
is to use ordinary differential equation models of the stoi-
chiometry and chemical kinetics of the pathway. However,
when discrepancies occur between the ODE model and the
experimental data, it is difficult to decide whether the model
structure is incorrect or whether the parameters of the model
have been badly chosen [52]. Here data-driven modeling can
help identify the stable structure of minimal ODE models that
can explain the measurement data.

In this example, we consider the JAK-STAT pathway,
which communicates chemical signals from outside a bio-
logical cell to the cell nucleus. It is implicated in a variety
of biological processes from immunity to cell division, cell
death, and tumor formation. Mathematical models based on
biochemical knowledge of the JAK-STAT pathway have iden-
tified nucleocytoplasmic cycling as an essential component of
the JAK-STAT mechanism, which has been experimentally
verified [52,53]. We therefore consider the simplest ODE
model with irreversible reactions that account for nucleocy-
toplasmic cycling in order to model information transfer from
the cell membrane to the nucleus as previously described [52]:

ẋ1(t ) = −k−
1 x1(t )c(t ) + 2k+

4 x4(t ), (8a)

ẋ2(t ) = +k+
1 x1(t )c(t ) − k−

2 x2
2 (t ), (8b)

ẋ3(t ) = −k−
3 x3(t ) + 1

2 k+
2 x2

2 (t ), (8c)

ẋ4(t ) = +k+
3 x3(t ) − k−

4 x4(t ). (8d)

A schematic of the JAK-STAT pathway is shown in Fig. 1,
illustrating the reaction cascade from outside the cell mem-
brane to inside the cell nucleus. The functions x1(t ), x2(t ),
x3(t ), and x4(t ) in the above ODE model are the time courses
of the concentrations of monomeric STAT-5, phosphorylated
STAT-5, cytoplasmic dimeric STAT-5, and STAT-5 in the nu-
cleus, respectively. The scalar constants k±

1 , k±
2 , k±

3 , and k±
4

are the kinetic reaction rates of phosphorylation, dimerization,
nuclear transport, and nuclear export, respectively. While of
course k−

1 = k+
1 , k−

2 = k+
2 , k−

3 = k+
3 , and k−

4 = k+
4 , we distin-

guish different occurrences of the same rate constant by sign
superscripts in order to make clear that they are independently
learned from data by our regression algorithm.

For sparse-regression model learning, a dictionary matrix
�b of all possible interactions between the molecules is gener-
ated [see Eq. (2)]. The left-hand side U t is the time derivative
of each concentration, i.e., ẋ1, ẋ2, ẋ3, and ẋ4 as approxi-
mated from the data. For this example, �b contains p = 19
polynomial nonlinearities (e.g., x1, x2, x2

1, x1x2, x1x2x3, . . .),
corresponding to chemical kinetics of different orders. The
same �i = �b is used for each component xi, i = 1, 2, 3, 4,
leading to the block-diagonal overall dictionary structure with
pb = 4 [shown in Fig. 2(a)]. For model inference, we use the
simulated concentration time courses shown in Fig. 2(b). They
are obtained by numerically solving the model (8) with k−

1 =
k+

1 = 0.021, k−
2 = k+

2 = 2.46, k−
3 = k+

3 = 0.2066, and k−
4 =

k+
4 = 0.106 58, as found by fitting experimental data [52,53]

(see Fig. 1 inset). The simulated data are corrupted with 10%
additive Gaussian noise before inference. The noisy time-
series data for the concentration of the activated EpoR recep-
tor c(t ) are taken directly from experimental measurements
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FIG. 1. Core module of the JAK-STAT signaling pathway. The
hormone EPO binding to the EpoR receptor results in activation of
the receptor [activated form with concentration c(t )] by transphos-
phorylation of JAK2 and subsequent tyrosine phosphorylation (P) of
JAK2 and the EpoR cytoplasmic domain. Phosphotyrosine residues
343 and 401 in EpoR mediate recruitment of monomeric STAT-5
(concentration x1). Upon receptor recruitment, monomeric STAT-5
is tyrosine phosphorylated (x2), dimerizes (x3), and translocates to
the nucleus (x4), where it binds to the promoters of target genes, is
dephosphorylated, and is exported again to the cytoplasm [52]. The
inset plot shows an experimentally measured time course of EpoR
activation (data from [53]).

[53], both when generating the simulation data and for model
inference. All units are relative to the experimental data.

From the simulated data for xi(t ), i = 1, 2, 3, 4, and the
experimentally measured c(t ), we aim to infer back the model
equations. The JAK-STAT pathway conserves mass, as evi-
dent from the ODE model (8). This can be used as a prior
when inferring a model from data. We therefore perform
group-sparse regression (see Sec. III A) using the groups

g1 = {i : column index of x1 in �1,�2}, (9a)

g2 = {i : column index of x2
2 in �2,�3}, (9b)

g3 = {i : column index of x3 in �3,�4}, (9c)

g4 = {i : column index of x4 in �1,�4}. (9d)

This is graphically represented by the vertical lines in
Fig. 2(a), with each group corresponding to one type of
biochemical process in the model, as given in the legend
(g1, phosphorylation; g2, dimerization; g3, nuclear transport;
and g4, nuclear export). We solve the resulting group-sparse-
regression problem using the present GIHT algorithm. This
leads to a conservative model structure, but the fitted values
of the rate constants may differ for different signs, i.e., it
can be that k−

1 �= k+
1 , etc. Enforcing symmetry also in the

FIG. 2. Dictionary design and simulated data. (a) Dictionary
construction and coefficient grouping. The identical dictionaries
�i = �b for each xi, i = 1, 2, 3, 4, are stacked in a block-diagonal
matrix for joint learning. Vertical lines indicate the coefficient groups
g1, . . . , g4, corresponding to the four biochemical processes named
in the legend. (b) Time-series data for different concentrations in the
JAK-STAT pathway obtained by numerically integrating the deter-
ministic ODE model in Eqs. (8) using the ode45 MATLAB solver and
adding 10% Gaussian noise (σ = 0.1).

coefficient values, and not only in the model structure, would
require solving a constrained group-sparse-regression prob-
lem, which we do not consider here.

The results are shown in Fig. 3(a). In this benchmark
setting, group sparsity helps identify the correct model terms
(red curves) out of all terms in the dictionary. There exists
a range of λ values (shaded gray) where stability selection
with threshold πth = 0.8 (green dashed line) can identify the
correct model, even at the 10% noise level considered here.

Without coefficient grouping, i.e., without imposing the
mass-conservation prior, there is no value of λ for which the
correct model is recovered, as shown in Fig. 3(b). To show
consistency of the group-sparsity method, we also provide
achievability plots in Figs. 3(c) and 3(d). They show that en-
forcing the mass conservation prior leads to consistent model
selection over a wide range of data sample sizes N .

Using group sparsity in combination with stability selec-
tion, the correct model can be identified in 100% of cases
(over 20 independent repetitions) when more than 200 data
points per component are used (i.e., success probability 1),
regardless of the noise level in the data (color, see the legend),
as shown in Fig. 3(c). Sparse regression without priors suffers
from inconsistency, at all noise levels and for all data sizes
[Fig. 3(d)]. The learned coefficients at different noise levels
are shown in Fig. 8 in Appendix A.

B. Enforcing model equivalence in advection diffusion
with spatially varying velocity

The development of organisms from their zygotic state
involves a myriad of biochemical interactions coupled with
the mechanical forces that shape the resulting tissue. In
past decades, the role of mechanics, including forces and
flows, has increasingly been investigated in developmental
biology and morphogenesis. On the cell and tissue scale,
many developmental processes involve both patterning and
flows. Examples include polarity establishment [54], tissue
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(No. of samples) (No. of samples)

FIG. 3. Inferring JAK-STAT signaling models from noisy data.
(a) Stability plot using grouping based on mass conservation. In
the gray shaded range of λ values, stability selection with πth = 0.8
identifies the correct model. The red solid lines show the behavior of
the true components of the ODE model; the black dashed lines are all
other P = 76 dictionary terms. (b) Stability plot without grouping.
There is no value of λ for which the true model is found. In both
(a) and (b) Gaussian noise with σ = 0.1 is added to the simulated
data before inference and n = 200 time points for each component
xi, i = 1, 2, 3, 4, are used. (c) Achievability plot for model selection
with mass conservation prior. (d) Achievability plot for model se-
lection without mass conservation prior. In (c) and (d) the success
probabilities of inferring the correct model over 20 independent
trials with different noise realizations and different random data
subsampling are shown as a function of the number of data points
used in each trial. Colored bands are Bernoulli standard deviations
for different amounts of noise added to the simulated data prior to
inference (see the legend).

folding [55], and cell sorting [56,57]. The spatiotemporal
concentration fields of labeled proteins can be recorded
in all of these processes using fluorescence microscopy
[54,58]. This has led to quantitative measurements and pre-
dictive models of active mechanochemical self-organization
in, e.g., cytoplasmic flow [59], endocytosis [60], and tissue
patterning [61].

In this example, we consider the simplest case of transport
by advection and diffusion of signaling molecules. In order
to allow for latent processes, we consider spatially varying
model coefficients. We thus construct groups that allow the
advection velocity to be a function of space. In addition, we
impose a prior that enforces model equivalence, i.e., learn-
ing structurally equivalent models for the different chemical
species, albeit with different diffusion constants. For the con-
centration fields u(x, t ) and v(x, t ) of two chemicals, this

t (time)

x 
(p

os
iti

on
)

t (time)
3.00.0 1.5 2.250.75 3.00.0 1.5 2.250.75

-π
π

0

(a) (b)

FIG. 4. Simulated data used to learn spatiotemporal models of
one-dimensional advection-diffusion dynamics. Visualization of the
data is shown for (a) u(x, t ) and (b) v(x, t ) with 15% additive Gaus-
sian noise (σ = 0.15). Spatial and temporal discretization use 256
and 200 regularly spaced grid points, respectively. The solution is
obtained via spectral differentiation and fourth-order Runge-Kutta
time integration. The diffusion constants of the species are Du = 0.25
and Dv = 0.50 in nondimensional units. The equations are solved
with periodic boundary conditions in the domain x ∈ [−π, π ) of
length L = 2π over the time horizon t ∈ [0, 3] with initial conditions
u(x, t = 0) = cos( 2πx

L ) and v(x, t = 0) = − cos( 2πx
L ) for species u

and v, respectively.

amounts to the model

∂u

∂t
+ c(x)

∂u

∂x
+ u

∂c(x)

∂x
= Du

∂2u

∂x2
, (10a)

∂v

∂t
+ c(x)

∂v

∂x
+ v

∂c(x)

∂x
= Dv

∂2v

∂x2
. (10b)

Here Du = 0.25 and Dv = 0.50 are the ground-truth diffu-
sion constants and the function c(x) = − 3

2 + cos( 2πx
L ) is the

spatially varying advection velocity field in the domain of
length L = 2π . With added chemical reactions, this form of
model has previously been successfully used to explain early
patterning in the single-cell C. elegans zygote [54,58].

We use data from numerical simulations of the above
model equations with 15% additive Gaussian noise (see
Fig. 4) to show that both priors, model equivalence and spatial
variability, are necessary to recover the ground-truth equations
including the spatially varying velocity field from the data.
We construct two block-diagonal dictionaries, for u and v,
where each block represents the dictionary constructed at one
spatial location. We use pb = 10 blocks, corresponding to five
randomly selected spatial data points for each u and v. Each
of the diagonal blocks 
b(n, p) uses n = 75 randomly chosen
time points and p = 15 potential operators.

We use grouping to enforce that the structure of the model
learned from the data must be the same for all spatial locations
and that the models learned for u and v must be equivalent.
Each group therefore ties a column in a block dictionary to all
corresponding columns in the other blocks. This construction
results in the following groupings to encode spatial variability:

gl = {{l + kp} ∀ k ∈ {0, . . . , pb − 1}}. (11)

Here the set gl is the group l and p is the number of columns
each dictionary block. The groups gu

l and gv
l , independently

constructed for species u and v using Eq. (11), are further
grouped to enforce model equivalence between species with
the grouping gl = gu

l ∪ gv
l .
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(No. of samples)

FIG. 5. Inferring advection-diffusion dynamics with unknown
spatially varying velocity field. (a) Stability plot with groups to
encode both spatially varying coefficients and model equivalence
between the species. The gray shaded region is the range of λ for
which model selection with πth = 0.8 identifies the correct model.
(b) Stability plot with groups only to encode spatially varying coeffi-
cients, but no grouping for model equivalence. (c) Stability plot with
no groupings at all. In (a)–(c) the red solid lines correspond to the true
components of the PDE for the field u, with symbols referring to the
differential operators as given in the legends. The dictionary block
size is n = 75 and p = 15 with pb = 10 blocks and 15% Gaussian
noise (σ = 0.15) added to the simulated data. (d) Achievability plot
for model selection using both priors for different levels of noise
in the data. Each point is averaged over 20 independent trials. The
colored bands correspond to the Bernoulli standard deviation.

The resulting stability and achievability plots are shown in
Fig. 5 when using the noisy data from Fig. 4 for inference.
Comparing Figs. 5(a) and 5(b), we see that the prior for
model equivalence is necessary to recover the true model. The
algorithm is unable to identify the diffusion process of species
u when only using the grouping for the spatially varying
coefficient [Fig. 5(b)]. Inference without any priors fails to
recover the true model even for noise-free data [Fig. 5(c)].
The achievability plot in Fig. 5(d) demonstrates the consis-
tency of our model selection algorithm with grouping over
20 independent realizations of the noise process and of the
random subsampling of the data. We observe consistent model
recovery with high success probability even at high noise
levels, albeit with decreasing fidelity as seen in Fig. 5(d). In
contrast, previous studies on advection-diffusion model re-
covery with unknown velocity field were limited to 1% noise
(σ = 0.01) [27].

The estimated latent velocity fields and their gradients are
shown in Fig. 9 and compared with ground truth for different
noise levels. In Appendix B we show how these estimates
can be further improved by postprocessing with additional
smoothness priors.

C. Enforcing symmetry in reaction-diffusion kinetics

Reaction-diffusion models are widely used in systems bi-
ology to describe the dynamics of chemical reaction networks
in a continuous space. Their popularity goes back to a sem-
inal paper by Turing [62], proposing that reaction-diffusion
mechanisms could be responsible for pattern formation in de-
veloping tissues. Since then, reaction-diffusion equations have
been successful in modeling nonequilibrium pattern formation
[63], dynamics of ecological [64] and biological systems [65],
cell polarity [54,63], phase transitions [66], and chemical
waves [67].

In this example, we consider the λ-ω reaction-diffusion
system as a prototypical model of chemical waves [68], show-
ing how it can be inferred from data when including symmetry
priors. The model equations for the scalar concentration fields
u(x, y, t ) and v(x, y, t ) of two chemical species in two dimen-
sions are

∂u

∂t
= Du

(
∂2u

∂x2
+ ∂2u

∂y2

)
+ λ(r)u − ω(r)v, (12a)

∂v

∂t
= Dv

(
∂2v

∂x2
+ ∂2v

∂y2

)
+ ω(r)u + λ(r)v. (12b)

Here we choose r = √
u2 + v2, ω(r) = −r2, λ(r) = 1 −

r2, and Du = Dv = 0.1. This system is symmetric in the two
species, i.e., swapping u ↔ ±v leaves the structure of the
model unchanged. Such symmetries are common in biology
and can be found in predator-prey models [69], models of
fish scale patterning [70], and models of antagonistic protein
interactions [54].

If known beforehand, such symmetries can be used as
priors. Here we impose the symmetry prior by grouping each
column of the dictionary of one species with the correspond-
ing column for the other species, where “corresponding”
means pertaining to the same operator upon the swap, i.e.,
uv2 ↔ u2v, u2 ↔ v2, uxx ↔ vxx, etc. The dictionary blocks

distancedistance

di
st

an
ce

(a) (b)

FIG. 6. Simulated data used to learn reaction-diffusion dy-
namics. Visualization of the two-dimensional concentration fields
(a) u(x, y) and (b) v(x, y) is shown at time t = 7.5 from nu-
merical solution of the model in Eqs. (12) with Du = Dv = 0.1
and 10% additive Gaussian noise (σ = 0.1). The solution is ob-
tained via spectral differentiation in the domain (x, y) ∈ [−10, 10]2

and fourth-order Runge-Kutta time integration with time step size
0.05 on a Cartesian grid of 128 × 128 points with initial con-
ditions u(x, y, 0) = tanh{√x2 + y2 cos[3∠(x + iy) − √

x2 + y2]} and
v(x, y, 0) = tanh{√x2 + y2 sin[3∠(x + iy) − √

x2 + y2]}.
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(No. of samples) (No. of samples)

FIG. 7. Inferring reaction-diffusion models from noisy spa-
tiotemporal data. Stability plots (a) with and (b) without symmetry
priors for noise level σ = 0.1. Achievability plots (c) with and
(d) without symmetry priors for different noise levels in the data (leg-
ends). We show the stability plots for λmin = 0.01λmax to illustrate
the difference between (a) and (b), but still run our algorithm with
λmin = 0.1λmax. Each point is averaged over 20 independent trials.
The colored bands correspond to the Bernoulli standard deviation.

for each of the pb = 2 species contain all polynomial nonlin-
earities up to degree 3 and all spatial derivatives up to second
order, resulting in p = 18.

We use data obtained by numerically simulating the above
model with 10% pointwise Gaussian noise added to the data
(see Fig. 6). The stability and achievability plots when using
these data are shown in Fig. 7. Comparing Figs. 7(a) and 7(b),
we observe that model inference without the symmetry prior
fails, whereas it works robustly when the prior is included via
group sparsity. This fact is substantiated by the achievability
plots in Figs. 7(c) and 7(d) for model inference with and
without the prior, respectively, for different noise levels σ

in the data. Our group-sparse-regression formulation provides
remarkable consistency for model recovery over a wide range
of λ values even at high noise levels of 10%.

D. Computational cost

Given the block diagonal dictionary matrix � ∈ RN×P and
the vector Ut ∈ RN×1 from data, the computational complexity
of Algorithm 1 is O(NP) in each GIHT iteration without the
debiasing step. This is the same complexity as matrix-vector
multiplication. We also include in our algorithm a debiasing
step, which also has a complexity of O(NP). However, debias-
ing has been reported to lead to faster convergence amortizing
its additional computational cost [71]. As an example, the
advection-diffusion problem considered here with n = 75,

p = 15, and pb = 10 required less than 1.5 s of runtime to
compute a regularization path with 15 different values of λ for
one data subsample when implemented in PYTHON on a single
2.3-GHz x86_64 processor core. The total time for stability
selection over 100 data subsamples was under 150 s. This
can be further accelerated using multithreaded programming,
since the different data subsamples can be evaluated indepen-
dently in parallel.

V. CONCLUSION AND DISCUSSION

We have introduced a flexible and robust inference frame-
work to learn physically consistent differential-equation
models from modest amounts of noisy data. We used the con-
cept of group sparsity to provide a flexible way of including
modeling priors as hard constraints that render inference more
robust. We combined this with the concept of stability se-
lection for principled deduction of regularization parameters
in cases where the true model is not known. To approxi-
mately solve the resulting nonconvex regression problem, we
introduce the group iterative hard thresholding algorithm in
Appendix C.

We have benchmarked and demonstrated the use of this
algorithm in examples of common mathematical models in bi-
ological physics. The examples covered ordinary differential
equations and partial differential equations in one- and two-
dimensional domains. They demonstrated how different types
of priors can be imposed using the concept of group sparsity:
Conservation laws, model equivalence, spatially varying la-
tent variables, and symmetries. The results have shown that
including such priors enables correct model inference from
data containing 10% or even 15% additive Gaussian noise.
Without the priors, the correct model could not be recovered in
any of the presented cases. The achievability plots furthermore
confirmed that relatively little data (here a few hundred space-
time points) is sufficient to reliably and reproducibly learn
the correct model when group-sparsity priors are included.
Without the priors, model inference was inconsistent in all
cases.

Importantly, stability selection converts the problem of tun-
ing the regularization parameter λ to the easier problem of
thresholding the importance measure 	̂. We argue that this is
easier to do, as it relates to an upper bound on the number of
false positives one is willing to tolerate [50,51], providing in-
terpretability. Further refining such results in the group-sparse
case would be useful for applications that require reliability
guarantees.

The concepts introduced here are independent of how the
elements of the dictionary are constructed. Exploring more ad-
vanced dictionary constructions, such as integral formulations
[31] or weak formulations [33], in conjunction with group
sparsity and stability selection likely provides a promising
future research direction.

In its current form, however, our framework has a num-
ber of limitations. First, we only considered nonoverlapping
groups, restricting each column of the dictionary to be part
of at most one group. This is a limiting assumption, as it
is not uncommon in physics or biology to simultaneously
use multiple overlapping priors. The more advanced concept
of structured sparsity [72] could provide a way to include
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overlapping priors in future work. Second, we only showed
how to include priors about the structure of a model. If addi-
tionally one wants to impose priors about coefficient values
(e.g., values of diffusion constants and reaction rates), the
framework would need to be extended to constrained group-
sparse regression [73]. Third, although we have demonstrated
robust data-driven inference of the model structure, estimates
for the coefficient values can considerable deviate from the
ground truth (see Appendix A). Fourth, although we have
demonstrated robust data-driven inference of the model struc-
ture, estimates for the coefficient values can considerable
deviate from the ground truth (see Appendix A). Refitting
the coefficient estimates using additional smoothness regular-
ization in a postprocessing step could help, as we hint at in
Appendix B.

Especially at high noise levels, coefficient estimation errors
likely stem from inaccurate spatial derivative approximations,
since the polynomial differentiation schemes used here are
known to amplify noise. This issue can possibly be addressed
in the future by combining our framework with physics-
informed neural networks [18] or with Gaussian processes
[17] to more robustly estimate the coefficients of the recovered
model once the model structure is fixed. Such hybrid methods,
combining the reconstruction abilities of physics-constrained
neural networks with the robustness and consistency of sparse
inference methods, may be particularly powerful for recov-
ering spatiotemporal latent variables, such as pressure or
stresses in continuum mechanics models, that cannot be di-
rectly measured in experiments.

ACKNOWLEDGMENTS

This work was supported by the German Research Foun-
dation (Deutsche Forschungsgemeinschaft) under Germany’s
Excellence Strategy, Grant No. EXC-2068-390729961, Clus-
ter of Excellence “Physics of Life” of TU Dresden, and by the
Center for Scalable Data Analytics and Artificial Intelligence
ScaDS.AI Dresden/Leipzig, funded by the Federal Ministry
of Education and Research (Bundesministerium für Bildung
und Forschung).

APPENDIX A: REGRESSION ESTIMATES
OF THE COEFFICIENTS

The coefficients estimated by the GIHT algorithm from the
noisy simulation data in the three application cases are shown
in Figs. 8 (for the JAK-STAT example), 9 (for the advection
velocity), and 10 (for the reaction-diffusion system). In all
cases, the results are compared with ground-truth values for
different noise levels.

APPENDIX B: USING SMOOTHNESS PRIORS
TO IMPROVE COEFFICIENT REGRESSION

In the results presented in Appendix A, the estimated coef-
ficients are the direct outcome of the GIHT algorithm, which
jointly infers the equation structure and the values of the coef-
ficients over the so-determined support. It is possible to further
improve the estimation of the coefficient values by imposing
an additional smoothness prior on the values of the coeffi-

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

FIG. 8. Relative errors in the coefficients inferred for the JAK-
STAT pathway reactions. The plots show the relative errors |ξ−ξ∗|

ξ∗
(vs ground truth ξ ∗) in the reaction rate estimates of the JAK-STAT
pathway as inferred by the GIHT algorithm for different noise levels
σ . Symbols show estimated means with bars indicating estimation
standard deviations over 20 independent trials. The ground-truth
values are k±

1 = 0.021, k±
2 = 2.46, k±

3 = 0.2066, and k±
4 = 0.106 58.

The closed and open symbols correspond to the independently esti-
mated rate constants of different signs, which should be identical.

cients. However, this additional prior introduces an additional
regularization parameter, which also needs to be determined
using stability selection, introducing an additional dimension
into the stability plots. Moreover, smoothness priors based on
discrete total variation and trend filtering based on discrete
higher-order derivatives impose constraints on how the data

σ = 0σ = 0

x position x position

x position

σ = 0.1σ = 0.1

x position

x position x position

σ = 0.05σ = 0.05

FIG. 9. Spatially varying velocity field and its gradient for the
advection-diffusion example. The plots show the estimates for the
latent spatially varying velocity c(x) (left column) and its gradient
∂xc(x) (right column) from the GIHT algorithm. The rows corre-
spond to the inference from data with different noise levels σ (shown
also in the legend). Symbols show estimated means with bars indicat-
ing estimation standard deviations over 20 independent trials. Black
solid lines are the ground truth.
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FIG. 10. Relative errors in the coefficient estimation for the λ-ω
reaction-diffusion system. The plots show the relative errors |ξ−ξ∗|

ξ∗
(vs ground truth ξ ∗) in the GIHT estimates of reaction coefficients
and diffusion constants for the species u (left) and v (right) as a
function of the noise level σ in the data. The ground-truth coefficients
for the species u and v are as given in Eq. (12).

points have to be sampled in space and time. This hampers the
application of stability selection, which relies on uniformly
random subsamples of the data.

We propose to reconcile these two seemingly conflicting
requirements of smoothness priors by first identifying the
groups using GIHT and then solving the trend-filtering prob-
lem as a postprocessing step for each individual group in order
to impose the smoothness priors. This uses GIHT with stabil-
ity selection only to infer the structure of the model (i.e., the
support of ξ), followed by a separate smoothness-constrained
regression to determine the values of the nonzero coefficients
by solving

ξ̂s = arg min
ξ

⎡
⎣1

2

∥∥∥∥∥Ut −
K∑

j=1

θg j ξg j

∥∥∥∥∥
2

2

+ λf

K∑
j=1

∥∥�
(k+1)
j ξg j

∥∥
1

⎤
⎦.

(B1)

This yields ξ̂s, the smoothed estimates recovered from
the trend-filtering problem. Here K is the number of
groups identified by stability selection using GIHT, �

(k+1)
j ∈

R(pg j −k−1)×(pg j −k) is a discrete smoothing filter based on the
(k + 1)th derivative, and pgj = |g j | is the size of the respec-
tive group. The ‖ · ‖1 norm in the smoothness prior penalizes
outliers and favors smooth reconstruction of coefficients. For
k = 0, this formulation reduces to the classic total variation
prior. The regularization constant λf controls the degree of
smoothness imposed on the coefficients by the filter.

As an example, one could regularize the Laplacian (i.e., the
curvature) of the coefficients. The discrete filter with k = 1 is
then given by

�(2) =

⎡
⎢⎢⎣

1 −2 1 · · · 0
0 1 −2 1 · · · 0
...

. . .
. . .

. . .

0 0 · · · 1 −2 1

⎤
⎥⎥⎦

for all j. We demonstrate this in the advection-diffusion ex-
ample by regularizing smoothness in all recovered groups
including the velocity and its gradient field. We solve the
optimization problem in Eq. (B1) using the alternating direc-
tion method of multipliers algorithm [74] with exhaustive grid
search to identify the smoothness regularization λf that leads

x position

σ = 0σ = 0

x position

x position x position

x position x position

σ = 0.05σ = 0.05

σ = 0.1σ = 0.1

FIG. 11. Reconstructed spatially varying velocity field and its
gradient for the advection-diffusion example with additional second-
order smoothness prior. The plots show the estimates for the latent
spatially varying velocity c(x) (left column) and its gradient ∂xc(x)
(right column) when imposing an additional smoothness prior over
each group recovered by stability selection using GIHT. The rows
correspond to data with different noise levels σ (shown in the
legend). For σ = 0 (top row), we use a smoothness regularization
λf = 1, and for σ = 0.05 and 0.1 (middle and bottom rows), we use
λf = 20. Black solid lines are the ground truth.

to the lowest mean-square error estimate. The reconstructed
velocity field and its gradient are shown in Fig. 11 for dif-
ferent levels of noise on the input data. Comparing with the
profiles recovered by GIHT directly (Fig. 9), we observe that
imposing smoothness priors in a separate postprocessing step
significantly improves the reconstruction of the latent fields in
this example.

APPENDIX C: ALGORITHM FOR GROUP-
SPARSE REGRESSION

Given data û(xi, t j ) at discrete locations xi and time points
t j , we use polynomial differentiation [16,27] to approximate
the derivatives required to construct the dictionary � and the
vector U t . To approximately solve the optimization problem
in Eq. (5), we derive the GIHT algorithm. This algorithm is
based on an approximate proximal operator for nonoverlap-
ping group sparsity, i.e., for cases where the groups {gl : l ∈
Nm} form a partition of the index set NP. In this case, the
approximate proximal operator can be applied to each group
separately, and the results summed [75].

1. Proximal view of the iterative hard thresholding algorithm

We start from the well-known iterative hard thresholding
(IHT) algorithm for ‖ · ‖0-regularized sparse regression [40].
We formulate this algorithm from the perspective of pro-
jection and proximal operators. For solving the composite
optimization problem in Eq. (3), we use linearization and
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solve the surrogate problem to generate a sequence {ξk} as

ξk+1 = arg min
ξ

[
h(ξk ) + 〈∇h(ξk ), ξ − ξk〉

+ t k

2
‖ξ − ξk‖2 + λr(ξ)

]
. (C1)

This linearization works under the assumption that the
data-fitting function h(ξ) is continuously differentiable with
Lipschitz continuous gradient, i.e., that there exists a pos-
itive constant L > 0 such that ‖∇h(x) − ∇h(y)‖2 � L‖x −
y‖2 ∀ x, y ∈ Rd . The problem in Eq. (C1) is equivalent to the
proximal operator

proxr (vk ) = ξk+1 = arg min
ξ

[l (ξ) ≡ 1
2‖ξ − vk‖2 + λr(ξ)],

(C2)

where vk = ξk − ∇h(ξk )/t k is the gradient-descent iteration
with step size 1/t k . Thus, we perform gradient descent along
−∇h(ξk ) and then apply the proximal operator. In the IHT al-
gorithm with nonconvex penalty function λ‖ξ‖0, the proximal
operator proxr (v) is approximated by hard thresholding [40].

2. Approximate proximal operator for the nonoverlapping
group-sparsity problem

We note that the above alternating gradient-proximal step
is similar to the forward-backward splitting algorithm [76].
We therefore propose to use approximate thresholding also
for the nonconvex group-sparsity problem.

The proximal operators for proper lower semicontinuous
functions r(·) are well defined with the set proxλ

r being
nonempty and compact [77]. By extension of the idea of using
thresholding as an approximation to the proximal step, we
decompose the separable optimization problem in Eq. (C2)
into a sum of subproblems [75] and apply the approximate
proximal operator (i.e., thresholding) to each subproblem sep-
arately. For nonoverlapping groups, we can decompose the

function l (ξ) defined in Eq. (C2) into two parts

l (ξ) =
[

1

2
‖ξgi

− vgi‖2
2 + λ

√
pgi1(‖ξgi

‖2 �= 0)

]

+
(

1

2
‖ξḡi

− vḡi‖2
2 + λ

∑
j �=i

√
pḡ j 1(‖ξḡ j

‖2 �= 0)

)
,

(C3)

where ḡi = {1, 2, . . . , P} \ gi is the complementary set of the
group gi. For a fixed ξḡi

= ξ∗
ḡi

, it can be verified that ‖ξ∗
gi
‖2 =

0 minimizes both terms in Eq. (C3) if ‖vgi‖ � √
λ
√

pgi . For
more details, we refer to Lemma 2 in [78] for the zero groups
(i.e., for ξ∗

gi
= 0) in the group LASSO problem [78]. Similar

arguments can be made for separable forms other than that
shown in Eq. (C3), based on which we can formulate the
thresholding rule to minimize the function l (ξ):

Hλ
group(vg) =

{
0 if ‖vg‖2 <

√
λ
√

pgi

vg if ‖vg‖2 � √
λ
√

pgi .
(C4)

For group size pgi = 1 ∀ i, this thresholding rule reduces to
the popular hard thresholding algorithm, and the sequence
{ξk} then are iterates of the iterative hard thresholding algo-
rithm [19,40]. Based on the generalized thresholding rule in
Eq. (C4), we propose the group iterative hard thresholding
algorithm (Algorithm 1) with an additional debiasing step
[71,79].

Algorithm 1 Group iterative hard thresholding with debiasing.

Input: �,U t , λ,G = {g1, g2, . . . , gm}, maxiter = 10 000
Output: ξ̂

1: Initialization: ξ1 = 0
2: for k = 1 to maxiter do
3: v = Hλ

group(ξk − ∇h(ξk )/t k )
4: Sk = supp(v) = {i ∈ {1, . . . , P} : vi �= 0}
5: ξk+1 = arg minz{‖U t − �z‖2

2 : supp(z) ⊆ Sk}
6: end for
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